

Enabling Semantic Web Services

Dieter Fensel · Holger Lausen · Axel Polleres
Jos de Bruijn · Michael Stollberg · Dumitru Roman
John Domingue

Enabling
Semantic
Web Services
The Web Service Modeling Ontology

With 41 Figures and 2 Tables

123

Dieter Fensel
Holger Lausen
Jos de Bruijn
Michael Stollberg
Dumitru Roman

Technikerstr. 21a
6020 Innsbruck, Austria

dieter.fensel@deri.org
holger.lausen@deri.org
jos.debruijn@deri.org
michael.stollberg@deri.org
dumitru.roman@deri.org

Axel Polleres
Área de Ciencia de la Computación e Inteligencia Artificial
Universidad Rey Juan Carlos
28933 Móstoles (Madrid), España
axel@polleres.net

John Domingue
Knowledge Media Institute
The Open University
Walton Hall
Milton Keynes, MK7 6AA, United Kingdom
j.b.domingue@open.ac.uk

Library of Congress Control Number: 2006932416

ACM Computing Classification (1998): H.4, H.3, D.2, I.2

ISBN-10 3-540-34519-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-34519-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether thewholeor part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof
is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current
version, and permission for use must always be obtained from Springer. Violations are liable for prosecution
under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

Typesetting: by the Authors
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Cover: KünkelLopka, Heidelberg

Printed on acid-free paper 45/3100YL - 5 4 3 2 1 0

Preface

Motivation

The constant driving factor behind the development of the Internet from
its very beginning has been the combination of distributed data and software
applications. The distribution of data has reached unforeseen dimensions with
the development of the World Wide Web. On the basis of agreed standards,
people are able to share and distribute information in a globally accessible,
scalable fashion.

The distribution of applications however, has more complex needs. You
need agreed protocols and interfaces between distributed software components
and, last but not least the data exchanged by these components must be
machine-readable and understandable.

To this end, service-oriented computing has become one of the predomi-
nant factors in current IT research and development efforts over the last few
years. Standardization in this area has already made its way out of the research
labs into industrial strength technologies and tools. Again, Web technologies
prove to be a good starting point: Web services seem to be the middleware
solution of the future for enabling the development of highly interoperable,
distributed software solutions: the new technologies subsumed under this com-
mon term promise easy application integration by means of languages such
as XML, and a common communication platform by relying on widely used
Web protocols.

While developments around Web services and service-oriented architec-
tures provide the underlying infrastructure, another field which promises noth-
ing less than the next generation of the Web is gaining momentum: researchers
worldwide are currently working on the Semantic Web, a Web for machines,
where not only is data distributed for human consumption, but also the data
on the Web will be machine-processable.

Naturally, these two lines of research fit together; still it seems unclear
how to combine Web services and the Semantic Web in the most fruitful way.

VI Preface

However, several promising results from numerous recent EU projects and
efforts within the World Wide Web Consortium show the direction.

Goals

The goal of this book is to provide an insight into and an understanding of
the problems faced by Web services and service-oriented architectures, as well
as the promises and solutions of the Semantic Web. We focus particularly
on the Web Service Modeling Ontology (WSMO), which provides a compre-
hensive conceptual framework for the fruitful combination of Semantic Web
technologies and Web services.

With the present book we want to give an overall understanding of the
WSMO framework and show how it can be applied to the problems of service-
oriented architectures. It is not a ready-to-install “user manual” for Semantic
Web services that is provided with this book, but rather an in-depth intro-
duction. While many of the related technologies and standards are still under
development we nevertheless think it is not too early for such a book: it is
important to create an awareness of this technology and think about it today
rather than tomorrow. The technology might not be at an industrial strength
maturity yet, but the problems are already.

Intended Audience

This book is aimed at providing beneficial insights to persons with various
levels of knowledge. On the one hand, by giving an exhaustive overview of
the history and development of the underlying technologies, we aim to guide
nonexperts in realizing the potential benefits of Semantic Web services, and to
give them a good overview of the field. On the other hand, we provide plenty
of detail about the Web Service Modeling Ontology, the state of its realization,
its underlying language, and ongoing tool support and implementation efforts.
By a thorough analysis of and comparison with all major related approaches,
we aim also to give the reader a glance at different ideas, and at the possibility
of future convergence of these technologies.

Organisation of this Book

We have divided the book in three main parts: Part I provides an introduction
to the field and its history. We cover basic Web technologies, Web services
and their predecessors, and the state of research and standardization in the
Semantic Web field. Readers familiar with these basics or parts of them, can
choose to skip all or parts of this Part.

Preface VII

Part II is dedicated to the realization of Semantic Web services. At the
core of this part of the book is a description of the Web Service Modeling
Ontology and its language. We shall discuss in detail how WSMO and related
technologies aim to address conceptually the problems of service-oriented ar-
chitectures by exploiting semantic annotations.

Part III is devoted to tools and applications and illustrates the practical
developments around WSMO and Semantic Web service technologies in gen-
eral. As opposed to the more abstract views in Part II, we aim to provide
pointers to ready-to-use tools and to interesting prototypes in this part, and
hope to encourage many interested readers to exploit and possibly deploy the
technologies presented in practice.

Acknowledgments

The work presented in this book has been funded by the European Commis-
sion under the SWWS Project (IST-2001-37134), in addition to contributions
from several other EU projects, namely, Knowledge Web (FP6-507482), DIP
(FP6-507483), and SEKT (IP-2003-506826). The majority of the research that
is described in this publication must be accredited to the tireless efforts of the
WSMO, WSML, WSMX, and WSMT working groups, to whom we remain
gratefully indebted for their valuable discussion and helpful advice. We must
also express the same gratitude to several members of the OASIS consortium,
particularly the SEE technical committee. Though we are unable to mention
so very many whose contributions deserve acknowledgment, this section would
be incomplete – as would the respective sections of this book – without recog-
nizing the contributions of our colleagues, Uwe Keller, Mick Kerrigan, Jacek
Kopecký, and Barry Norton. Special thanks also goes to Graham Hench for
his enduring proofreading and patient editorial efforts. Finally, to all those not
mentioned – and to any we may have forgotten we offer our sincerest thank
you.

The authors, April 2006

Contents

Part I Foundations

1 Introduction . 3

2 The World Wide Web . 7
2.1 History . 7
2.2 The Building Blocks: URIs, HTTP, and HTML 10
2.3 From HTML to XML . 14
2.4 Summary . 24

3 The Semantic Web . 25
3.1 Ontologies and the Semantic Web . 27
3.2 The Resource Description Framework . 31
3.3 The Web Ontology Language OWL . 33
3.4 Rules for the Semantic Web. 34
3.5 Summary . 36

4 Web Services . 37
4.1 Terminology and Principles . 39
4.2 The Origins of Web Services . 40
4.3 The Web Service Technology Stack . 42
4.4 Web Services in Reality . 49
4.5 What’s Missing in Web Services? . 50
4.6 Summary . 53

Part II The Web Service Modeling Ontology

5 Introduction to WSMO . 57
5.1 WSMO Design Principles . 57
5.2 Top-Level Elements of WSMO . 59

X Contents

5.3 The Language for Defining WSMO . 60

6 The Concepts of WSMO . 63
6.1 Ontologies . 63
6.2 Web Services . 67
6.3 Goals . 74
6.4 Mediators . 75
6.5 Nonfunctional Properties . 78
6.6 Summary . 81

7 WSML – a Language for WSMO . 83
7.1 The WSML Layering . 84
7.2 General WSML Syntax . 85
7.3 WSML Semantics . 93
7.4 WSML Exchange Syntaxes . 94
7.5 Key Features of WSML . 97
7.6 Relation to RDF(S) and OWL . 98
7.7 Summary . 99

8 Related Work in the Area of Semantic Web Service
Frameworks . 101
8.1 OWL-S . 101
8.2 SWSF . 104
8.3 WSDL-S . 107
8.4 Summary . 109

Part III Tools and Applications

9 Semantic Web Service Usage Tasks in WSMO 113
9.1 The Virtual Travel Agency Scenario . 113
9.2 Discovery . 115
9.3 Mediation . 124
9.4 Composition . 132
9.5 Grounding and Execution . 135

10 Tools . 141
10.1 Infrastructure . 141
10.2 Design Tools . 145
10.3 Execution Environments . 151
10.4 Summary . 156

Contents XI

11 Applications of WSMO . 157
11.1 E-Commerce . 157
11.2 E-Government . 165
11.3 E-Banking . 166
11.4 Summary . 168

12 Conclusion and Outlook . 169
12.1 Semantic Web Services Using WSMO . 169
12.2 Standardization Efforts . 170
12.3 Industrial Collaboration . 173
12.4 Alternatives to Classical Web Services . 174

References . 177

Index . 187

List of Figures

2.1 Gopher – the first “net browser” . 8
2.2 Mosaic – the first graphical Web browser . 10
2.3 HTML document and corresponding layout in a Web browser . . 13
2.4 An HTML table: tags do not reflect the meaning of the content 15
2.5 An XML tree . 17
2.6 XSLT: converting between different XML formats 23

3.1 The Semantic Web language layer cake . 26
3.2 Example is-a hierarchy (or taxonomy) . 28
3.3 Example RDF graph . 31
3.4 Example RDF/XML serialization . 32
3.5 RDFS ontology of persons and working group members 32

4.1 Web service architecture . 38
4.2 Structures of WSDL 1.1 and WSDL 2.0 . 45
4.3 The GlobalWeather service viewed in an UDDI browser 48
4.4 The evolution of the Web. 50

5.1 WSMO core elements . 59
5.2 The relation between WSMO and MOF . 60

6.1 WSMO Web service – general description 67

7.1 WSML variants and layering . 84

8.1 OWL-S conceptual model . 102
8.2 The layered structure of SWSL-Rules [9] . 106
8.3 Schematic illustration of how WSDL-S provides links to

domain models . 107

9.1 Overview of the use of the VTA . 114
9.2 The three major processes of heuristic classification 118

XIV List of Figures

9.3 The three major processes in service discovery 119
9.4 Matchmaking notions for semantically enabled discovery 124
9.5 Dimensions of mediation . 125
9.6 Process mediation patterns . 128
9.7 Example of process-level mediation . 129
9.8 WSMO mediator topology . 131
9.9 Approaches to data grounding . 137

10.1 Architecture of the WSML2Reasoner framework 144
10.2 The WSML online reasoning service . 145
10.3 The Eclipse platform and the WSMO tools developed on it 146
10.4 The Web Service Modeling Toolkit . 148
10.5 Creating mappings in the data mediation plug-in 148
10.6 Concept editor in WSMO Studio . 149
10.7 DERI Ontology Management Environment (DOME) 150
10.8 WSMX components . 152

11.1 Overview of a VISP . 163
11.2 Semantic Web services in e-government . 166

Part I

Foundations

1

Introduction

More than three decades ago, the information revolution started with
ARPANet, the so-called grandfather of the Internet, with originally only four
connected servers. The idea of developing this network came from the need
for scientists to communicate with one another independently of geographi-
cal barriers. Just as the telephone allowed them to communicate their words,
ARPANet enabled them to freely transfer data or use remote computers.
While the Internet grew continuously, several useful developments such as
email, FTP, and TELNET took place within ARPANet. However, in addition
to such developments, it took another revolutionary idea to cause the real take-
off. Only in the early 1990s, when the Internet as such and communication
via email, file transfer via FTP, and remote server access via TELNET were
already fairly well established in the scientific community, did a young scien-
tist working at CERN spark the next revolution. Tim Berners-Lee combined
several innovative ideas into a distributed hypertext system, and provided
building blocks such as a simple underlying protocol (HTTP), unique identi-
fiers for linkable information (URIs), and an easy-to-use language (HTML) to
create human-readable, interlinked documents accessible all across the Inter-
net. And with these monumental technological foundations the World Wide
Web was born.

The idea of allowing persistent publication of information on your server,
which would be publicly available via an open protocol, combined with the
possibility of linking this information arbitrarily, encouraged people to publish
enormous amounts of data making the Web the biggest data collection ever:
Google alone has more than 9 700 000 000 Web pages indexed at the time of
publication, and is, of course, rapidly growing.

Facing this unmanageable amount of data, but also recognizing its big po-
tential, it was again Tim Berners-Lee hwo coined the name for his vision of
the next generation of the Web, the Semantic Web. His vision proposed to
enrich the human-readable data on the Web with machine-readable annota-
tions thereby allowing the Web to evolve into the world’s biggest database:
“If HTML and the Web made all the online documents look like one huge

4 1 Introduction

book, [the Semantic Web] will make all the data in the world look like one
huge database” [12].

However, making the data on the Web machine-readable is still only half
of the story of revealing the full potential of the Web. Within conventional
databases, for example, machine-readable annotations usually adhere to com-
pletely different schemes and structures which remains the biggest obstacle
to automation of data integration tasks. The Semantic Web faces the same
problem.

Ontologies, which formally define the structure and meaning of machine-
readable metadata while simultaneously providing common, consensual meta-
data vocabularies to be used on the Semantic Web, will close this gap. To this
end, the W3C has developed metadata standards such as the Resource De-
scription Framework (RDF) and the Web Ontology Language (OWL). These
languages not only allow us to annotate the data on the Web in a machine-
understandable way but also enable additional inferences and allow for the
integration of this data via automated reasoning over its ontological struc-
ture.

Hovever, we are not at the end of the road, but it is only here where this
book hooks in: the original idea of the Internet was about sharing not only
static data but also dynamic resources and services such as using procedures
and whole applications on remote machines. This idea is also starting to reveal
its full potential on the current Web. Humans interact with programs that
interact via Web interfaces in order to purchase books, to book flights, to
check their current stock quotes, etc. in a much more dynamic fashion than
only sharing and requesting static data. Moreover, besides these business-
to-customer (B2C) services exposed as Web interfaces on the current Web,
there is an even stronger need for easy-to-use, easy-to-integrate services on
the business-to-business (B2B) level. In order to achieve full automation of
these services we must go beyond the universal database that the current
Semantic Web proposes. What we require is more like what could be called a
“service-oriented Semantic Web”.

The emerging Web service technologies are the first step in the direction
of such service-oriented architectures (SOAs). A unified protocol (SOAP), a
common interface description language (WSDL), the de facto standard of a
service registry (UDDI), and consistent use of a common XML-based syntax
provide the basic building blocks for such an infrastructure. Unfortunately,
even with such technologies, the integration of services still depends largely
on human experts. Web services as such are limited, in so far as they operate
on a merely syntactic level.

The proposed solution towards full automation of service usage, namely
facilitating the seamless integration of services that are published and acces-
sible on the Web, is called Semantic Web services [90]. Semantic Web services
are simply a semantic annotation of the functionalities and interfaces of Web
services. In the very same way that ontologies and metadata languages will
facilitate the integration of static data on the Web, the annotation of services

1 Introduction 5

will help to facilitate the automation of service discovery, service composition,
service contracting, and execution.

Part I of this book is dedicated to introducing the building blocks which
constitute Semantic Web services. After giving an introduction to the basic
Web technologies in Chapter 2, we present a primer on current Semantic Web
standards in Chapter 3. This is followed by an introduction to Web service
technologies and their origins in Chapter 4, where we also explain the need
for convergence of these technologies towards Semantic Web services.

The chapters in Part I do not aim to give exhaustive details about the
technologies discussed, but rather attempt to provide the reader with adequate
foundational understanding. The goal is to present the relevant technologies in
enough depth to prepare the reader for the later chapters. However, should the
explanations seem too brief, or readers’ minds be too inquiring, and whenever
else deemed necessary, we refer the interested reader to the relevant literature
in the respective areas.

2

The World Wide Web

This chapter will provide a short history of the World Wide Web (Section 2.1)
and an introduction to the basic concepts behind the scenes (Section 2.2).
Thereafter we shall discuss in Section 2.3 the first step towards a machine-
readable language, the eXtensible Markup Language (XML), and its possible
impact on the current Web landscape on the one hand and its impact on
information integration in general on the other.

2.1 History

Since its early days, the main goal of the Internet was the deployment of a
platform for humans to interact and exchange information. Nevertheless, it
took sometime before it took off in the way we know and use the Internet to-
day. This volume is not about the basic technologies and protocols which were
necessary to build up the necessary infrastructure of the Internet as such,1 but
we start at the stage when technologies that we now consider as the basis of
the modern Internet had already begun to spread around the globe, i.e. when
the Internet as a medium for communication via email, file transfer via FTP,
and remote server access via TELNET were already fairly well established
in specific communities. Decades ago, the telephone enabled analog spoken
communication across geographic boundaries. The Internet now enabled col-
laboration and free exchange of digital information with several advantages
compared with its analog predecessor. By allowing human users to exchange
and communicate via email, it allowed people to communicate information
asynchronously through free exchange of messages. That is, unlike telephone
communication, information exchange through messages was no longer con-
strained to take place at the same time. However, the user still had to know
very well in advance where to find certain information, and persistent publi-
cation or free availability of information on remote servers was not common.
1 We refer the interested reader to the literature on computer networks, for in-

stance [59, 127], for these fundamental aspects.

8 2 The World Wide Web

Public (anonymous) FTP servers were a first step in this direction. Yet finding
and, particularly, referencing information still required human interaction to
a large extent. However, starting in the late 1980s and early 1990s, several
parallel developments changed this situation. The need for directory services
and user-friendly search facilities of the information available on the Internet
was recognized and taken into account by what we can – in a sloppy way –
call the first “net browser”: Gopher2 was the first program that allowed the
user to browse and search for data and computational resources and tried
to abstract away from cryptic commands, hiding network details completely
from the user.

Along with the first menu-driven graphical user interfaces and operating
systems, Gopher, introduced in 1991 at the University of Minnesota, provided
browsing facilities through hierarchies of application links, files, directories, a
phone book server (X.500), graphics, etc. on a remote machine, plus facilities
to search indexing servers. Fig. 2.1 shows an “ancient” Gopher browser.

Fig. 2.1. Gopher – the first “net browser”

However, in order for the idea to really take off, another revolutionary
idea – or, more precisely, the combination of existing revolutionary ideas –
was necessary, and it took some two more years until what we refer to as
the “Web” and a “Web browser” were fully developed. The whole idea of the
Web dates back to a small application called Enquire. Tim Berners-Lee, then
a young researcher at CERN, first developed Enquire, an efficient, easy-to-use
information system, mainly for his own use. Enquire 3 already used terms
such as “universal document identifier” and “hypertext”.

2 http://gopherproject.org/Software/Gopher.
3 Inspired by the title of a book with the flowery title Enquire about everything.

2.1 History 9

The idea of hypertext, i.e. the idea of documents that contain references
that allow one to jump to another text or document, or to a different part of
the same document, was not completely new. The concepts can be viewed as
dating back to Vannevar Bush’s Memex, presented in an article in the Atlantic
Monthly back in 1945, where he described a vision – though never actually
constructed – of a mechanical device that allowed texts in books to be linked
with each other and allowed one to navigate via these connections.4

Tim Berners-Lee recognized the potential of these appealing ideas used
in hypertext for building an easy-to-use, easy-to-extend, easy-to-access global
information system: the World Wide Web. The real innovation of Tim Berners-
Lee was the combination of three main ingredients to create the world’s most
successful distributed information system:

• A standard protocol for retrieving hypertexts and other documents, acces-
sible over any server on the Internet which supports this protocol (HTTP).

• Each information item has a globally unique identifier by which it can be
retrieved/dereferenced (the URI).

• A simple format for creating and laying out human-readable, interlinked
hypertext documents, refined to include the possibility to include graphics,
and extensible to other multimedia formats. (HTML)

These ingredients allowed a global network of interlinked information items
published over the Internet, to grow in a constantly expanding way, with over
9 700 000 000 Web pages indexed by Google alone at the time of writing of
this book.

The first Web page was created in 1990 by Tim Berners-Lee himself on
a CERN server.5 The first graphical Web browser, Mosaic (Fig. 2.2), was
developed by the NCSA (National Center for Supercomputing Applications)
and entered the market in 1993.

In May 1994, the first International Conference on the World Wide Web
led to the foundation and first meeting of the World Wide Web Consortium
(W3C) later that year, in December. Since then, the W3C has set up many
important standard recommendations (e.g. HTML, XML, RDF, and OWL)
– some of which we shall revisit in the course of this chapter – in the hope of
steering the development of the Web towards its next generation.

In the following section we shall take a closer look at the fundamental
building blocks of the Web.

4 The term “hypertext” itself, though, was coined later in the 1960s by another IT
pioneer, Ted Nelson, in the Xanadu project.

5 A copy of this page is still available at
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/

TheProject.html.

10 2 The World Wide Web

Fig. 2.2. Mosaic – the first graphical Web browser

2.2 The Building Blocks: URIs, HTTP, and HTML

The success of the early Web architecture was based on three main compo-
nents: Uniform Resource Identifiers (URIs), the Hypertext Transfer Protocol
(HTTP), and the Hypertext Markup Language (HTML). We shall now briefly
describe these ingredients in Sections 2.2.1–2.2.3, after which we shall discuss
some limitations on the automation and flexibility of the basic Web infras-
tructure, particularly with respect to HTML. These limitations have led to
the development of the more general eXtensible Markup Language (XML),
presented in more detail in Section 2.3.

2.2.1 Unique Identifiers for the Web – URIs and IRIs

Uniform Resource Identifiers (URIs) mark the first building block of the Web,
following a very simple but effective principle: global naming leads to global
network effects. First defined in RFC6 1630 in June 1994 as “Universal Re-
source Identifiers”, URIs were originally distinguished between Uniform Re-
source Locators (URLs) and Uniform Resource Names (URNs). URLs were
conceived as addresses of a dereferenceable resource, whereas URNs are not
necessarily dereferenceable.

A simplified version of the URI syntax looks as follows:

scheme : [//authority][/path][?query][#fragid]

6 The RFCs (Requests for Comments) published by the Internet Engineering Task
Force (IETF) play an important role in the Internet standardization process.
They include mainly standards on a more fundamental technical level than what
the W3C deals with. For more details see http://www.ietf.org.

2.2 The Building Blocks: URIs, HTTP, and HTML 11

Here, scheme denotes, for instance (but not necessarily), a protocol over which
the respective resource is accessible. Nowadays, the http:// scheme is most
commonly used. The owning entity of the resource is denoted by authority.
In most cases this is a server or domain name which has the practical side
effect that domains indeed belong to legal entities. Explaining the details
of the query and fragid (fragment identifiers) parts would go beyond the
scope of this book, but most readers will have experienced them already in
the common use of HTTP. For example, when a search engine is accessed,
the query for a keyword is usually coded in the URI, such as http://www.
google.com/search?q=wsmo; this URI encodes a query for the search string
wsmo at Google. Fragment identifiers denote a secondary resource with no
direct path where the interpretation of fragment IDs depends on the type
of medium. For instance, the usual use in HTML denotes an anchor within
a hypertext document. URIs without scheme parts are called relative URIs,
where “relative” means that these URIs are understood relative to a base URI.
What this base URI is or defaults to depends on the particular application of
the URI; in HTML, for instance, it is the document URI, where the document
is accessible on the Web.

Note that we learn from the now-deprecated distinction between URNs
and URLs that although URIs/IRIs identify resources, it does not follow that
any URI is a deferencable, web-accessible resource. As we shall see in later
chapters, the principle of unique identification via globally unique identifiers
can and is used in ways other than dereferencing Web resources accessible
over a particular protocol on a particular server. Still, it is often useful to take
advantage of some of the useful characteristics of URIs (such as ownership
by an authority by the use of domains) for unique identification of resources
other than documents on the Web. Usual uses of URIs include:

• addresses on the Web (which include documents, service endpoints, etc.);
• namespaces in XML QNames or other languages (see Section 2.3);
• identifiers of things and concepts (e.g. RDF, see Section 3.2);
• unique keys (e.g. MIME message ID).

The specification of URIs reached its current state in RFC 3986 in January
2005. IRIs (International Resource Identifiers) are a recent extension of URIs
which allow a richer character set, i.e. full Unicode, as defined in RFC 3987.

2.2.2 A Protocol for Hypertext Transfer – HTTP

The Hypertext Transfer Protocol (HTTP) is a simple protocol that provides
all necessary means for simple client/server interaction in a stateless request–
response manner. Such a manner allows a client to open the connection with
a request, whereafter the server responds and closes the connection again.
HTTP is the protocol of choice for most Web-based communication for de-
livering files and other data (collectively called resources) on the World Wide

12 2 The World Wide Web

Web. A resource is generally understood as a piece of information that can be
identified by a dereferenceable URI.

Request messages in HTTP consist of a method invocation, some header
lines and an optional message body. The basic method of requesting a resource
from an HTTP server is HTTP GET. For instance, when you type the URI
http://www.wsmo.org in your browser, it will initiate a GET request message
of the form

request method
︷︸︸︷

GET

path to resource
︷︸︸︷

/

HTTP version
︷ ︸︸ ︷

HTTP/1.1

Host: www.wsmo.org

The second line (Host: ...) is the header information for the GET request.
GET requests always have an empty message body. Apart from GET, some
other important request methods are:

• HEAD: returns only the headers of what GET would return (useful for
testing);

• PUT: to replace or create a resource;
• DELETE: to remove a resource;
• POST: to submit data to a resource for processing, or to manipulate an-

other resource.

An HTTP response in turn contains again the HTTP version, a status code
and, analogously to the request, headers and a message body which, in the
case of a website request, would be the respective HTML document, e.g.

HTTP/1.1 200 OK

Date: Fri, 10 Feb 2006 16:05:38 GMT

Content-Length: 1000

Content-Type: text/html

Connection: close

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<html><head>
...

For further details on the two most commonly used versions of HTTP, we
refer to the respective latest RFCs 1945 (HTTP 1.0) and 2616 (HTTP 1.1).
The differences between these versions include, among other things, cache
control or keeping the socket connection alive for reuse after a response.

2.2.3 Hypertext for the Masses – HTML

In his quest for an easy-to-use layout language for the Web, Tim Berners-
Lee decided to base it on an application of Standard Generalized Markup
Language (SGML). SGML allows the definition of markup languages using a
format of text structured using tags dlimited by <>, of the following form:

2.2 The Building Blocks: URIs, HTTP, and HTML 13

<tagname> plain text or nested tags </tagname>

Tags distinguish between an opening tag <tagname> and a closing tag
</tagname>.7 Attributes can be attached to opening tags in the form
<tagname attributename1="value" ...attributename1="value">. The al-
lowed tags and attributes for a particular SGML application such as HTML
are defined by document type definitions (DTDs).

The DTD for HTML defines tags and attributes for layout and for in-
terlinking text and multimedia documents. So, HTML is a description lan-
guage for the layout of documents, tailored for display in Web browsers, which
provides a portable format independent of the actual rendering in a specific
browser or other application. The general structure of an HTML document is
shown by a small example in Fig. 2.3.

<!DOCTYPE HTML PUBLIC ”−//W3C//DTD HTML 4.01//EN”
”http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Here goes the title of the document</title>
</head>
<body>

<!−− Here could go arbitrary other HTML
text and formatting instructions −−>

<h1>Heading</h1>
<p>A paragraph in the document body.
<h2>Subheading within the document</h2>
<p>This is a

link
to the WSMO page.

</body>
</html>

Fig. 2.3. HTML document and corresponding layout in a Web browser

HTML and most browsers are tolerant of minor, sloppy mistakes such as
omitting closing tags. For example, the closing paragraph tag <P> in Fig. 2.3
is optional in HTML. Browsers often accept even invalid HTML and will try
to render it, although the W3C highly recommends that one should stick with
the standards when authoring an HTML page.

Basic features of HTML comprise:

• linking to other documents or parts of documents;
• structuring text (lists, tables, various levels of headings, etc.);
• formatting text (italic/boldface/underlined, etc.);
• adding graphics to the document;
• creating simple user interfaces using forms (including radio buttons, text

fields, check boxes, etc.).

7 Note that in HTML it is not necessary that every tag must be closed: for instance,

, denoting a new line.

14 2 The World Wide Web

HTML can define links using absolute and relative URIs (see Section 2.2.1
above) using the document location as the base URI. Using the above-
mentioned fragment identifier, links to different parts of a document can also
be defined. Links are created using an anchor tag <a> which specifies the loca-
tion of the link in the href attribute, for example, <a href="http://www.wsmo.

org/">link in Fig. 2.3.
This simple mechanism of linking from one HTML page to another has

been one of the success factors of the current Web. Such links enable crawlers
to find and index pages, an essential prerequisite for efficient searching. More-
over a link also contains semantic information: if page A links to page B this
means that page B supposedly has some valuable information. Search engines
such as Google use this information to rank their search results.

The ease of use and the availability of many WYSIWYG editors for HTML
and cascading style sheets (CSS) have made it possible for almost anyone to
publish information on the Web. This active, widespread participation has
contributed significantly to today’s success of the Web. Apart from standard-
ization of basic features by the W3C, HTML has been extended to include
support for scripting languages, such as JavaScript, developed by Sun Mi-
crosystems, multimedia formats, such as Macromedia Flash, developed and
distributed by Adobe Systems (formerly by Macromedia), and other vendor-
specific extensions which are widely supported by modern browsers, either na-
tively or via plug-in mechanisms. Nevertheless, despite many vendor-specific
extensions and widely adopted features, the W3C is trying to keep standard
HTML within controlled bounds in order to enable widest possible accessi-
bility and interoperability. To this end, the W3C has published Web Content
Accessibility Guidelines,8 which provide several levels of conformance in order
to guarantee accessability of Web content.

From its first standardized version 2.0 described in RFC 1866 of Novem-
ber 1995, HTML evolved to the last version of “classic” HTML, version 4.1,
published as a W3C Recommendation on December 24, 1999. From that time
on, the further evolution of classic HTML was frozen in favor of XHTML, the
XML version of HTML to be discussed in the next section.

The need for separation of content and layout, just as in templates in usual
word processors, led to extension of the basic HTML standard by cascading
style sheets, where the word “cascading” indicates that one style sheet can in-
herit from another, permitting the combination of several stylistic preferences
in one document.

2.3 From HTML to XML

The freedom of HTML has its drawbacks. First, although CSS take the first
step towards separation of content and layout, the tags and attributes in

8 http://www.w3.org/TR/WAI-WEBCONTENT.

2.3 From HTML to XML 15

HTML are merely designed to convey layout information for a browser. To
be precise, there are a few exceptions such as the <META> tag, which allows
some limited form of meta-information to be added within HTML documents.
Nevertheless, the language is mainly tailored for human consumption and does
not impose any strict rules for facilitating machine readability. However, the
increase in the number of dynamically generated Web pages and the sheer
amount of information available on the Web have created a strong need for
automatically processing Web content.

Via the detour of HTML, much of the structural information conveyed in
a Web page gets lost. Take, for instance, the table in the HTML document
in Fig. 2.4 which shows some members of the WSMO Working Group and
their affiliations. The human reader can easily see that the rows of the table

<!DOCTYPE HTML PUBLIC ”−//W3C//DTD HTML 4.01//EN” ”http://www.w3.org/TR/html4/strict.dtd”>
<html>

<head><title> WSMO People </title></head>
<body>

<table border=”1”>
<caption>WSMO working group members</caption>
<thead><tr>

<th>First Name</th>
<th>Last Name</th>
<th>Affiliation</th>

</tr></thead>
<tfoot><tr>

<td colspan=”3”>The working group has 77 members.</td>
</tr></tfoot>
<tbody>

<tr>
<td>Dieter</td>
<td>Fensel</td>
<td>DERI International</td>
<td></td>

</tr>

.

.

.
</tbody>

</table>
</body>

</html>

Fig. 2.4. An HTML table: tags do not reflect the meaning of the content

body contain the first names, last names, and affiliations of WSMO Working
Group members. The table footer gives information about the total number
of Working Group members. However, the HTML tags themselves do not give
any hint towards this conclusion.

If, however, we could use arbitrary SGML tags, we could indicate the
meaning of particular data items directly within the document source, thereby
allowing tasks such as ordering by last name or computing the total number
automatically, using simple script languages. So, what was needed was a gen-
eral markup language tailored for the Web; to this end, the eXtensible Markup
Language (XML) was developed.

XML, in short, is a restricted version of SGML which imposes certain
restrictions (e.g. tag names disallow certain symbols, all tags have to be closed,
and names are case-sensitive). These restrictions were chosen, in order to ease

16 2 The World Wide Web

<?xml version=”1.0”?> <!DOCTYPE people SYSTEM
”http://www.wsmo.org/workinggroup.dtd”> <!−− This XML document gives
information about working group members of the WSMO working group
−−> <people xmlns=”http://www.wsmo.org/namespace”>

< title>WSMO working group members</title>
<member chair=”yes”>

<firstname>Dieter</firstname><lastname>Fensel</lastname>
< affiliation >DERI International</ affiliation >

</member>
<member chair=”yes”>

<firstname>John</firstname><lastname>Domingue</lastname>
< affiliation >Open University</ affiliation>

</member>
<member>

<firstname>Axel</firstname><lastname>Polleres</lastname>
< affiliation >Univ. Rey Juan Carlos</ affiliation >

</member>

.

.

.
</people>

Listing 2.1. An XML document

parsing and have made XML a widely accepted interchange format for various
(semi-)structured data over the last few years. A possible XML version of the
example in Fig. 2.4 is shown in Listing 2.1

Obviously, designated tag names and attributes in XML facilitate easier
processing of the content by a machine. XML allows the application designer to
design his/her own language with specific tags and attributes, leaving almost
all the freedom of SGML. The specific elements and attributes used are, just
as in SGML, declared in a DTD.

However, how can a Web browser, for instance, know how to display the
content in an XML document? More generally, how can machines using dif-
ferent tags and attributes still exchange data? To solve this, XML comes
with several accompanying standards for querying XML documents (XPath
and XQuery) and translating between different XML formats (XSLT). Using
these mechanisms, the document in Listing 2.1 can, for instance, be trans-
formed to XHTML, the XML version of HTML, which can be displayed by
Web browsers.

In the following, we shall briefly outline some of the essentials of XML,
such as namespaces and DTDs, and come to the conclusion that DTDs are
sometimes insufficient for describing the structure of the data in an XML
document. To overcome this, another standard for defining the structure of
XML documents, XML Schema, has been defined. After taking a look at XML
Schema, we shall also briefly introduce XPath and XSLT to familiarize the
reader with the fundamental ideas. We shall close this section and chapter
with a discussion of the outlook for XML applications and some bridging
remarks concerning the Semantic Web technologies described in more detail
in the next chapter.

2.3 From HTML to XML 17

2.3.1 XML Basics

Let us return to the simple XML file in Listing 2.1 to briefly explain the basic
structure of an XML document.

The first part of the document, called the prolog, consists of an XML decla-
ration which denotes the XML version, and optionally the character encoding,
etc., plus an optional document type definition. This DTD can be defined ex-
ternally (as in the example), or within the document itself. Immediately after
the prolog, the XML document starts with the designated document element
(the root). Each XML element is delimited by start and end tags and can con-
tain one or more subelements, text, or a mixture of both text and elements.
Each element must end with a closing tag (an element without content can be
abbreviated to <tagname/> instead of writing <tagname></tagname>); at-
tribute values must be quoted and must not appear in end tags, and elements
may not overlap. That is more or less about it. Any document following this
syntactical structure is considered a well-formed XML document. The infor-
mation contained in a well-formed XML document can be viewed as a tree,
having the document element as its root, as shown in Fig. 2.5.

Fig. 2.5. An XML tree

Furthermore, XML documents which obey the rules for usable tag names
and attributes defined in an associated DTD (or other schema definition such
as XML Schema, see below) are called valid.

Document Type Definitions in XML

As we have mentioned DTDs several times already in the context of SGML
and XML, it is worthwhile to illustrate DTDs with a small example. As already

18 2 The World Wide Web

mentioned, DTDs provide a basic mechanism for defining an XML language,
i.e. the usable tags and attributes in a specific document obeying a particular
DTD, and which elements may appear as subelements of another, etc. List-
ing 2.2 shows the DTD workinggroup.dtd, which defines the elements and
attributes used in our running example.

<!DOCTYPE people [
<!ELEMENT people (title,member+)>
<!ELEMENT member (firstname,lastname,affiliation+)>
<!ATTLIST member chair (yes|no) ”no”>
<!ELEMENT title (#PCDATA)>
<!ELEMENT firstname (\#PCDATA)>
<!ELEMENT lastname (\#PCDATA)>
<!ELEMENT affiliation (\#PCDATA)>

]>

Listing 2.2. DTDs define the allowed tags and attributes in an XML file

DTDs allow one to define the structure of elements by regular expressions
using the usual symbols ‘?’,‘*’,‘+’, and ‘—’ to denote optional, arbitrary, at
least one, or alternative occurrences, respectively, of elements. Attributes can
be assigned a default value and can be set as required or optional. For text
elements, DTDs do not provide specific datatypes but only the generic PC-
DATA (parseable character data). For attributes, there are several possible
types apart from the generic character data (CDATA), such as IDs (which
need to be unique within a document), and NMTOKENS (essentially, al-
lowed XML attribute and element names). In addition, DTDs allow one to
define commonly used macros as ENTITIES. The well-known > which is
replaced by the greater-than sign ‘>’ within the text in an HTML document
is an example for such a macro, and is defined in the HTML DTD as follows:

<!ENTITY gt CDATA ”\&\#62;>

Obeying to a common schema such as that provided by a DTD (e.g. HTML
documents obey the HTML DTD) allows software to exchange and process
the corresponding documents. The same holds for exchange formats in XML
defined by common usage of a shared DTD. However, DTDs, which orig-
inate from SGML, have several drawbacks with respect to expressivity. In
the context of XML, these have been overcome by another schema definition
language, namely XML Schema, which we shall cover in Section 2.3.2.

Namespaces

The xmlns attribute in the document element of the XML document in List-
ing 2.1 plays a special role. This attribute assigns a namespace URI to the
element. Unlike other attributes which can be freely defined within DTDs
(or in XML Schema as below), the namespace attribute has a special mean-
ing in XML. When given, it defines the namespace for all the attributes and
tags within its scope, which means the element, where it is defined, all its
attributes and subelements, and the attributes of subelements. Namespaces

2.3 From HTML to XML 19

serve the purpose of disambiguating tags by reusing the fundamental idea of
URIs once again: Global naming allows universal IDs for tag and attribute
names.

If you consider our example above, a mathematician who did not know
about our WSMO Working Group DTD might easily come up with another
XML document if she wanted to represent the set {a, b, c}, using the tag name
member ambiguously, with a completely different meaning:

<?xml version=”1.0”?>
<set xmlns=”http://www.example.org/mathstuff/sets/”>
<member>a</member>
<member>b</member>
<member>c</member>
</set>

Fortunately, by declaring different namespaces, an XML parser will recognize
that the member in Listing 2.1 is something different from that in this short
example. Different namespaces can also be mixed within one document, since
each tag or attribute is uniquely identified by a qualified name, which is ob-
tained from the combination of the namespace plus the tag/attibute name.
However, if different namespaces are used within one XML document, they
must be disambiguated by using different prefixes. Assuming that we wanted
to reuse the set notation of our unknown mathematician for people with sev-
eral affiliations among the WSMO Working Group members, we could come
up with a modified XML document as in Listing 2.1.

<?xml version=”1.0”?>
<people xmlns=”http://www.wsmo.org/namespace”

xmlns:math=”http://www.example.org/mathstuff/sets/”>
< title>WSMO working group members</title>
<member chair=”yes”>

<firstname>Dieter</firstName><lastame>Fensel</lastname>
< affiliation ><math:set>

<math:member>DERI International</math:member>
<math:member>DERI Innsbruck</math:member>
<math:member>DERI Galway</math:member>

</math:set></affiliation>
</member>
<member chair=”yes”>

<firstname>John</firstname><lastname>Domingue</lastname>
< affiliation >Open University</ affiliation>

</member>

.

.

.
<member chair=”yes”>

<firstname>Axel</firstname><lastname>Polleres</lastname>
< affiliation ><math:set>

<math:member>Univ. Rey Juan Carlos</math:member>
<math:member>DERI Innsbruck</math:member>

</math:set></affiliation>
</member>

.

.

.
</people>

Listing 2.3. Alternative XML format for Listing 2.1

20 2 The World Wide Web

Here, the XML processor has no difficulty in disambiguating different member
tags, since they are all uniquely qualified by namespaces; for unprefixed tags
and attributes, the default namespace http://www.wsmo.org/namespace is
used, whereas the prefix math is used to point to the namespace http://www.
example.org/mathstuff/sets/.

We can see from this simple example that namespaces and unique identifi-
cation are crucial underpinnings for combining and exchanging XML data in
a Web context or in other open environments where the partner is not known
upfront.

As a side remark, note that namespace declarations are an example where
URIs are used not only to identify Web-accessible documents, but also as
abstract resources.

2.3.2 XML Schema

DTDs impose several restrictions with respect to expressivity. This means
that only very simple languages can be defined by means of DTDs alone. For
instance, one cannot define restrictions on how often a certain element may
appear by only regular expressions; moreover, datatypes are hardly supported;
etc.

These limitations are overcome by another mechanism for defining XML
grammars, XML Schema. Beyond DTDs, XML schema allows advanced fea-
tures such as the following:

• support for a basic set of datatypes (numbers, strings, and dates, etc.),
which can be restricted further;

• definition of one’s own element or attribute types, available for reuse via
an inheritance mechanism which allows extension/restriction;

• namespace support;
• XML Schema is an XML language itself, allowing developers to profit from

tool support, the inherent extensibility of XML, the combination of several
XML Schema files, etc.

Listing 2.4 shows a schema for the XML file shown in Listing 2.1, which
exposes some of these features. For instance, it specifies a common type
namestring, which is based on the basic XML Schema string datatype re-
stricted to strings starting with an upper-case letter. This type is assigned
to both the firstname and the lastname elements. In order to derefer-
ence the schema in Listing 2.4, the DTD reference in Listing 2.1 would
need to be replaced with a reference to the XML Schema document. For
more details of XML Schema we refer to the XML Schema Standard, see
http://www.w3.org/XML/Schema.

Note, however, that XML Schema still operates on a purely syntactic level
in defining the structure of XML data and, more importantly, there are certain
things that are beyond the expressivity of XML Schema. These shortcomings
will be partly resolved by technologies to be discussed in Chapter 3:

2.3 From HTML to XML 21

version=”1.0” encoding=”UTF−8”?> <xs:schema
xmlns=”http://www.wsmo.org/namespace”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”

elementFormDefault=”qualified” attributeFormDefault=”qualified” targetNamespace=”http://
www.wsmo.org/namespace” >

<xs:element name=”people”>
<xs:complexType>

<xs:sequence>
<xs:element name=”title” type=”xs:string” maxOccurs=”1”/>
<xs:element name=”member” type=”person” maxOccurs=”unbounded”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:complexType name=”person”>

<xs:sequence>
<xs:element name=”firstname” type=”namestring” minOccurs=”1” maxOccurs=”2”/>
<xs:element name=”lastname” type=”namestring” minOccurs=”1” maxOccurs=”2”/>
<xs:element name=”affiliation” type=”namestring” maxOccurs=”unbounded”/>

</xs:sequence>
<xs:attribute name=”chair” default=”no”>

<xs:simpleType>
< xs:restriction base=”xs:string”>

<xs:enumeration value=”yes”/>
<xs:enumeration value=”no”/>

</ xs:restriction >
</xs:simpleType>

</xs:attribute>
</xs:complexType>
<xs:simpleType name=”namestring”>

< xs:restriction base=”xs:string”>
<!−− This pattern says that names are strings

starting with an uppercase letter −−>
<xs:pattern value=”\{p}\{Lu\}.\∗”/>

</ xs:restriction >
</xs:simpleType>

</xs:schema>

Listing 2.4. XML Schema offers features beyond DTD: datatypes, reuse of element
structures, etc.

• Although XML Schema allows one to define reusable types for attributes
and tags, this does not mean that one can indeed define refined tags, i.e.
not true inheritance on a semantic level is supported [38].

• No complex checks relating different elements or attributes are supported
(for instance, in comparison arithmetic, one element may need to be
greater than another, the sum of the contents of elements of a particu-
lar type should not exceed a certain amount, etc.).

2.3.3 XPath and XSLT

So far, we have only scratched the surface, limiting our discussion to defining
the structure of XML documents. We have not yet touched on how to query,
tranform, and integrate various XML files/formats: the forte of the family of
standards that surround XML.

Switching between different XML formats, easily generating mediators or
wrappers between different formats, merging data, and combining and filtering
information are the hallmark of the Web as it evolves from a network of

22 2 The World Wide Web

human-consumable information towards machine-readability. These issues are
partly being addressed by XPath and XSLT.

XPath is a lightweight query language for extracting parts of XML trees.
It allows to specify complex conditions on child or parent nodes, content,
or attribute values, and provides simple arithmetic and aggregation (such as
summing or averaging element values). The details of XPath are beyond the
scope of this book, but, most importantly, XPath is one of the main com-
ponents of Extensible Stylesheet Language Transformations (XSLT) which
allows one to rearrange and synthesize the results of XPath queries into new
XML documents; thus, the transformation of an arbitrary XML format into
another one is facilitated.

Here also, we do not want to go into details, but it is worth noting the evi-
dent concepts behind XSLT (Fig. 2.6). An XSLT stylesheet defines templates
which match certain parts of the original XML file(s) and convert them into
the output format. These templates can be recursively applied or explicitly
called.

The example in Fig. 2.6 shows an XML stylesheet which converts our
running example XML file back to XHTML, which can be displayed in your
Web browser.

Again, we emphasize that XSLT is not restricted to XHTML transforma-
tions but can also be used for arbitrary conversions between different XML
formats.

2.3.4 Applications and Tools for XML

In this subsection, we discuss, without claiming to be exhaustive, some avail-
able tools and applications for XML, illustrating the great success of XML in
the past few years. Application designers and developers are profiting from
the large number of available APIs and tools for XML.

Tools

As shown in Fig. 2.5 XML documents are often conceived as trees. Application
programming interfaces (APIs) for XML such as DOM9-based APIs indeed
store XML documents in a tree-like data structure while parsing and allow
programmers to conveniently deal with XML data in the DOM tree in memory,
navigating between child and parent elements, along attributes, etc. Such an
in-memory representation of XML data might become too inflexible or space-
consuming for large XML documents. Therefore other more lightweight APIs,
such as SAX,10 have been developed in order to parse and process XML files
sequentially using an event-based model.

9 http://www.w3.org/DOM.
10 http://www.saxproject.org.

2.3 From HTML to XML 23

<?xml version=”1.0” encoding=”UTF−8”?>
< xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
version=”1.0”
xmlns:wsmo=”http://www.wsmo.org/namespace”
xmlns=”http://www.w3.org/1999/xhtml”>

<xsl:template match=”/”>
<html xmlns=”http://www.w3.org/1999/xhtml”>

<title>The chairs of the WSMO Working Group</title>
<body>

<h1>WSMO WG Chairs</h1>
<xsl:apply−templates/>

</body>
</html>

</xsl:template>

<xsl:template match=”wsmo:member[@chair=’yes’]”>
<xsl:value−of select=”./wsmo:lastname”/>,
<xsl:value−of select=”./wsmo:firstname”/>

</xsl:template>

<xsl:template match=”text()|@∗”/>

</ xsl:stylesheet >

(a) An XSLT Stylesheet . . .

(b) . . . which converts the XML file from Listing. 2.1 into XHTML

Fig. 2.6. XSLT: converting between different XML formats

XPath and XSLT processors are also available off the shelf, e.g. XERCES11

from Apache. The simplicity of the underlying data model combined with the
increasing tool support has made XML the most successful data exchange
format for information integration applications (not restricted to Web appli-
cations alone).

Applications of XML

Nowadays, XML has reached the status of a universal data exchange format
with high industry support. In applications such as data integration or Web

11 http://xerces.apache.org.

24 2 The World Wide Web

services, XML is a fundamental basis. The simplicity of the format and the
standardization by a neutral body with wide vendor support (the W3C) are
the cornerstones of the success of XML. Nevertheless, as already pointed out
in the discussion of XML Schema, the format only enables syntactic inter-
operability, to a large extent. The meaning of tags cannot be described with
XML as such, and transformation between different XML formats, albeit fa-
cilitated through XSLT and related languages, remains mainly a manual task.
However, the manual deployment of XSLT transformations does not scale to
mediation between possibly hundreds of thousands of different XML formats.
Standardized vocabularies and intelligent technologies, such as the Semantic
Web, promise to tackle these challenges by building on top of XML standards.
In the following chapters, we shall describe these in more detail.

2.4 Summary

In this chapter, we have briefly recapitulated the history of the current Web
and outlined its most substantial developments and success factors. The tra-
ditional Web is based on three main building blocks: global identification of
resources via URIs, a simple client–server-based protocol for persistent pub-
lication of globally accessible data (HTTP), and an easy-to-use language for
creating interlinked hypertext documents (HTML).

Standardization is the key for technologies such as the Web in reaching
their current level of success and interoperability. The World Wide Web con-
sortium (W3C) and other standardization bodies are working towards the
continuous progress of Web-related standards, by controlling accessability and
compliance with basic Web principles.

As we have seen, a first step towards the next generation of the Web and
a more strict separation between content and layout has already been taken
with the introduction of XML and the related family of standards, of which
we have sketched a few. As we shall see in the following chapters, however,
this takes us only halfway towards real machine-processable Web content and
interoperable services. We need to bring back the computer as a device for
computation and assistance to help us deal better with the rapidly growing
amount of information available on the Web.

Note that unlike other documents in the literature, we do not include XML
per se in the “Semantic Web”, but instead consider the family of standards
around XML as an intermediate step towards a real machine-processable Web
infrastructure.

3

The Semantic Web

A major drawback of XML is that XML documents do not convey the mean-
ing of the data contained in the document. Exchange of XML documents over
the Web is only possible if the parties participating in the exchange agree be-
forehand on the exact syntactical format (expressed in XML Schema) of the
data. The Semantic Web [13] allows the representation and exchange of infor-
mation in a meaningful way, facilitating automated processing of descriptions
on the Web.

Annotations on the Semantic Web express links between information re-
sources on the Web and connect information resources to formal terminologies
– these connective structures are called ontologies. Ontologies [38] form the
backbone of the Semantic Web; they allow machine understanding of infor-
mation through the links between the information resources and the terms
in the ontologies. Furthermore, ontologies facilitate interoperation between
information resources through links to the same ontology or links between
ontologies.

The term “ontology” originates from philosophy and has been adopted in
the field of Computer Science with a slightly different meaning [53]:

An ontology is a formal explicit specification of a shared conceptualization.

In the late 1990s the idea of a Semantic Web [13] boosted interest in the
development of ontologies even further. The general conviction held by the
W3C is that the Semantic Web needs an ontology language that is compatible
with current Web standards and is in fact layered on top of them. The language
needs to be expressed in XML and, preferably, should be layered on top of
RDF(S) (an overview of these languages is provided later in this chapter).

An often used depiction of the vision of Semantic Web languages is the
“Semantic Web layer cake.” The original layer cake1, which featured a rules
language layered on top of the ontology language, was presented at XML2000
by Tim Berners-Lee, director of the World Wide Web Consortium (W3C). It

1 http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html.

26 3 The Semantic Web

turns out that rules languages cannot be layered on top of the Web Ontology
Language OWL in a straightforward manner [70]; this triggered a refinement
of the layer cake, depicted in Fig. 3.1, where rules feature next to OWL, on top
of a common layer. The revised layer cake2 was presented by Tim Berners-Lee
at his keynote address at the WWW2005 conference.

Fig. 3.1. The Semantic Web language layer cake

The bottom layers in the layer cake, i.e. Unicode and URI and XML
(Schema), consist of existing Web standards and provide a syntactical basis for
Semantic Web languages. Unicode provides an elementary character-encoding
scheme, which is used by XML. The URI (uniform resource identifier) stan-
dard provides a means to uniquely identify and address documents and, more
generally, resources on the Web. All concepts used in the languages located
higher in the layer cake can be specified using Unicode and are uniquely iden-
tified by URIs.

We shall describe the RDF(S), OWL, and rules layers below. We shall not
cover the logic, proof, and trust layers here. Placing the logic layer on top
of the OWL and rules layer is somewhat controversial, since OWL and rules
languages are grounded in logic. Some argue that a more expressive logic
language should be layered on top of the ontology language [108]. It could
also be argued that this is not an appropriate layering; that is, that OWL and
rules should be the top languages and that applications should use that layer
directly. The proof and trust layers are not well-understood, but most likely
refer to the application and not to any specific language. For instance, the
application could prove some statement by using deductive reasoning, and
a statement could be trusted if it had been proven and digitally signed by
some trusted third party. The user would very likely play an important role
in the trust layer because it is the user that should decide whether or not an
information source should be trusted.
2 http://www.w3.org/2005/Talks/0511-keynote-tbl/.

3.1 Ontologies and the Semantic Web 27

In the remainder of this chapter we first describe the role of ontologies in
the Semantic Web and then proceed by discussing the languages of the layer
cake.

3.1 Ontologies and the Semantic Web

A key feature of ontologies is that, through formal, real-world semantics and
consensual terminologies, they interweave human and machine understanding
[38]. This important property of ontologies facilitates the sharing and reuse
of ontologies among humans, as well as among machines.

A major reason for the recent increasing interest in ontologies is the devel-
opment of the Semantic Web [13], which can be seen as knowledge manage-
ment on a global scale. Tim Berners-Lee, inventor of the current World Wide
Web and director of the World Wide Web Consortium (W3C), envisions the
Semantic Web as the next generation of the current Web. This “next gener-
ation” will expand upon the prowess of the current Web by adding machine-
readable information and automated services. According to [38], “The explicit
representation of the semantics underlying data, programs, pages, and other
Web resources will enable a knowledge-based Web that provides a qualita-
tively new level of service.” Ontologies provide such an explicit representation
of semantics. The combination of ontologies with the Web has the potential
to overcome many of the problems in knowledge sharing and reuse and in
information integration.

Ontologies interweave human and computer understanding of symbols.
These symbols, also called terms and relations, can be interpreted by both
humans and machines. The meaning for a human is represented by the term
itself, which is usually a word in natural language, and by the semantic re-
lationships between terms. An example of such a human-understandable re-
lationship is a superconcept – subconcept relationship (often referred to by
the term “is-a”). Such a relationship denotes the fact that one concept (the
superconcept) is more general than another (the subconcept). For instance,
the concept Person is more general than Student. Figure 3.2 shows an example
“is-a” hierarchy (or taxonomy), where the more general concepts are located
above the more specialized concepts.

Concepts describe a set of objects in the real world. For example, the
concept PhD-Student aims to capture all existing PhD students. One such
PhD student is Mary, who is modeled in Fig. 3.2 as a box, and has an instance-
of relation to the concept PhD-Student. This instance-of relationship means
that the actual object is captured by the concept PhD-Student. And because
of the formal is-a relationships between the concepts PhD-Student, Researcher,
Student, and Person, John must also be an instance of the concepts Researcher,
Student, and Person.

These relationships are fairly easy to understand for the human reader
and, because the meanings of the relationships are formally defined, a machine

28 3 The Semantic Web

Fig. 3.2. Example is-a hierarchy (or taxonomy)

can reason with them and draw the same conclusions as a human can. These
relationships, which are implicitly known to humans (e.g. a human knows that
every student is a person) are encoded in a formally explicitly way so that
they can be understood by a machine. In a sense, the machine does not gain
real “understanding”, but the understanding of humans is encoded in such
a way that a machine can process it and draw conclusions through logical
reasoning.

3.1.1 Types of Ontologies

There exist many different ontologies, built for many different types of appli-
cations; they vary in both the amount of detail they express and the generality
of their use.

WordNet [37], for example, aims to cover all of the English language by
providing a (natural-language) description for every English term and by spec-
ifying simple relationships, such as synonym (equivalent terms) and hyper-
/hyponym (more/less general terms) relationships. The scope of WordNet is
very broad (all of the English language) and the level of detail is relatively
low. There are only natural-language descriptions for the terms, which are
not machine-understandable, and there exist only very simple relationships
between the terms.

CYC [82] is another example of an ontology with a very broad scope, which
attempts to capture all commonsense knowledge (e.g. space and time), but
with a high level of detail. There are many very strict formal relationships be-
tween different terms. These formal relationships are machine-understandable.

We shall refer to the scope of an ontology as the “generality” and the level
of detail as the “expressiveness”. We provide a more detaild description of the
generality and expressiveness of ontologies below and use these as dimensions
to classify existing ontologies.

3.1 Ontologies and the Semantic Web 29

3.1.2 Generality of Ontologies

An ontology is a specification of a shared conceptualization. Therefore, domain
experts, users, and designers need to agree on the knowledge specified in an
ontology so that the ontology may be shared and reused. It is hard to get such
agreement. It is therefore advantageous to layer the knowledge in different
ontologies on the basis of generality, so that not everybody needs to agree
to all ontologies. Agreement is required only between specific domain and
application ontologies and between the higher-level ontologies that are being
used [91].

In the literature [38, 56, 62, 125], we generally find three common layers
of knowledge. On the basis of their levels of generality, these three layers
correspond to three different types of ontologies, namely:

• Generic (or top-level) ontologies, which capture general, domain indepen-
dent knowledge (e.g. space and time). Examples are WordNet [37] and
CYC [82]. Generic ontologies are shared by large numbers of people across
different domains.

• Domain ontologies, which capture the knowledge in a specific domain. An
example is UNSPSC,3 which is a product classification scheme for vendors.
Domain ontologies are shared by the stakeholder in a domain.

• Application ontologies, which capture the knowledge necessary for a spe-
cific application. An example could be an ontology representing the struc-
ture of a particular Web site. Arguably, application ontologies are not
really ontologies, because they are not really shared.

The separation between these three levels of generality is not always strict.
WordNet, for example, contains some domain-specific relations and CYC con-
tains domain-specific microtheories (modules of the ontology).

Although sometimes other types of ontologies, such as representational on-
tologies or task ontologies are distinguished, the above three types of ontolo-
gies are common in the literature and are, in our opinion, a useful separation
of types of ontologies along the dimension of generality.

3.1.3 Expressiveness of Ontologies

Orthogonal to the generality of ontologies is their expressiveness. We distin-
guish the following levels of expressiveness (partly on the ontology spectrum
introduced in [89]):

• Thesaurus. Relations between terms, such as synonyms, are additionally
provided. Again, WordNet [37] is an example.

3 http://www.unspsc.org.

30 3 The Semantic Web

• Informal taxonomy. There is an explicit hierarchy (generalization and spe-
cialization are supported), but there is no strict inheritance; an instance of
a subclass is not necessarily also an instance of the superclass. An example
is the Yahoo! Dictionary.4

• Formal taxonomy. There is strict inheritance; each instance of a subclass
is also an instance of a superclass. An example is UNSPSC.

• Frames. Frame (or class) contains a number of properties and these prop-
erties are inherited by subclasses and instances. Ontologies expressed in
RDFS [20], described below, fall into this category.

• Value restrictions. The values of properties are restricted. Ontologies ex-
pressed in OWL Lite (see Section 3.3) fall in this category.

• General logic constraints. Values may be constrained by logical or mathe-
matical formulas using values from other properties. Ontologies expressed
in OWL DL (see Section 3.3) fall into this category.

• Expressive logic constraints. Very expressive ontology languages such as
those seen in Ontolingua [36] and CycL [82] allow first-order logic con-
straints between terms and more detailed relationships such as disjoint
classes, disjoint coverings, inverse relationships, and part–whole relation-
ships. Note that some of these detailed relationships, such as disjointness
of classes, are also supported by OWL DL (and even OWL Lite), which in-
dicates that the borders between the levels of expressiveness remain fuzzy.

3.1.4 History of Ontology Languages

In the areas of knowledge engineering and knowledge representation, interest
in ontologies really started taking off in the 1980s with knowledge represen-
tation systems such as KL-ONE [19] and CLASSIC [18].

An important system for the development, management, and exchange of
ontologies in the beginning of the 1990s was Ontolingua [36], which uses an
internal KIF (knowledge interchange format)5 representation, but is able to
interoperate with many other knowledge representation (ontology) languages,
such as KL-ONE, LOOM, and CLASSIC.

The languages used for ontologies were determined by the tool used to cre-
ate the ontologies. Systems such as KL-ONE, CLASSIC and LOOM each used
their own ontology language, although the Ontolingua system was capable of
translating ontologies between different languages, using the KIF language as
an interchange language. We can see the languages and tools as being interde-
pendent, but also as being somewhat orthogonal, where we have the language
on one axis and the tool on the other. For example, KL-ONE, CLASSIC, and
LOOM all have their basis in description logics [5], while KIF has its basis in
first-order logic.

4 http://www.yahoo.com.
5 http://logic.stanford.edu/kif/kif.html.

3.2 The Resource Description Framework 31

In the early 1990s, KIF could be seen as a standard for ontology mod-
eling. This language was used in prominent tools such as Ontolingua and
in important ontology engineering projects, such as TOVE (Toronto Virtual
Enterprise) [55] and the Enterprise Ontology [129].

Later on in the 1990s, ontologies began to be applied to the World Wide
Web. SHOE [62], for example, used ontologies to annotate Web pages using
formal ontologies embedded in HTML documents. Ontobroker and its succes-
sor On2broker [40] use ontologies not only to annotate Web pages, but also to
formulate queries and derive answers. Ontobroker and On2broker provide an
annotation language which is used to annotate HTML documents with ref-
erences to ontologies. The ontology, the terminology used by the annotation
language, is specified using a representation language, based on F-Logic [72].
Finally, Ontobroker uses a query language for the retrieval of documents based
on their annotations. This query language is a subset of the representation
language. All these languages have an impact on the current languages of the
Semantic Web.

3.2 The Resource Description Framework

The Resource Description Framework (RDF) [75] is the first language de-
veloped especially for the Semantic Web. RDF was developed as a language
for adding machine-readable metadata to existing data on the Web. RDF
uses XML for its serialization in order to realize the layering depicted in
the Semantic Web language layer cake (Fig. 3.1). RDF Schema [20] extends
RDF with some basic (frame-based) ontological modeling primitives. There
are primitives such as classes, properties, and instances. Also, the instance-of,
subclass-of, and subproperty-of relationships have been introduced, allowing
structured class and property hierarchies.

RDF has the subject–predicate–object triple, commonly written as P(S,O),
as its basic data model. An object of a triple can, in turn, function as the sub-
ject of another triple, yielding a directed labeled graph, where resources (sub-
jects and objects) correspond to nodes, and predicates correspond to edges.
Furthermore, RDF allows a form of reification (a statement about a state-
ment), which means that any RDF statement can be used as a subject in
a triple. An example RDF graph is shown in Fig. 3.3. The corresponding
RDF/XML serialization is shown in Fig. 3.4.

Fig. 3.3. Example RDF graph

32 3 The Semantic Web

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22−rdf−syntax−ns#”
xmlns:ex=”http://example.org/#”
xml:base=”http://example.org/”>

< rdf:Description about=”#john”>
<ex:hasName rdf:parseType=”Resource”>

<ex:firstName>John</ex:firstName>
<ex:lastName>Smith</ex:lastName>

</ex:hasName>
</rdf:Description>

</rdf:RDF>

Fig. 3.4. Example RDF/XML serialization

3.2.1 RDF Schema

RDF Schema (RDFS) is a lightweight ontology language for defining vocab-
ularies for RDF. Unlike XML Schema, which prescribes the order and com-
binations of tags (the structure) in an XML document, RDF Schema only
provides information about the interpretation of the statements given in an
RDF data model. RDF Schema does not say anything about the syntactical
appearance of the RDF description. RDFS can in fact be seen as an extension
of RDF with a vocabulary for defining classes, class hierarchies, properties (bi-
nary relations), property hierarchies, and property restrictions. RDFS classes
and properties can be instantiated in RDF. For a more detailed comparison of
XML Schema and RDF Schema we refer the reader to [74]. Figure 3.5 shows
the graph which corresponds to the is-a hierarchy of Fig. 3.2.

Fig. 3.5. RDFS ontology of persons and working group members

RDF(S) (referring to the combination of RDF and RDF Schema) is not
very expressive compared with many other ontology languages, as it allows
only the representation of concepts, concept taxonomies, and binary relations.
The expressive limitations of RDF(S) were a major motivation for developing
more expressive languages for the Semantic Web. In the remainder of this
chapter, we describe the ontology and rules components which are layered on
top of RDF(S).

3.3 The Web Ontology Language OWL 33

3.3 The Web Ontology Language OWL

The Web Ontology Language OWL [32] is an expressive ontology language
which extends RDFS. OWL itself consists of three species of increasing ex-
pressiveness:

• OWL Lite. The least expressive of the OWL species. Compared with RDFS
it adds local range restrictions, existential restrictions, simple cardinality
restrictions, equality, and various types of properties (inverse, transitive,
and symmetric).

• OWL DL. Compared with OWL Lite, OWL DL adds full support for (clas-
sical) negation, disjunction, cardinality restrictions, enumerations, and
value restrictions. The element “DL” comes from the resemblance to an
expressive description logic language [5], namely SHOIN (D).

• OWL Full. Whereas OWL Lite and OWL DL impose restrictions on the
use of vocabulary and the use of RDF statements, OWL Full does not
have such restrictions. Therefore, OWL Full allows both the specification
of classes-as-instances and the use of language constructs in the language
itself, which thereby modifies the language.

For OWL Lite, it turns out that although there are many syntactic restric-
tions in the language, the actual expressiveness of the language is very close to
the expressiveness of OWL DL [65]. OWL Full is a very expressive language
and, because of the syntactic freedom which is allowed in the language, key
inference problems are undecidable. In the remainder of this section, we shall
focus on OWL DL.

Whereas statements in RDF(S) are triples, statements in OWL DL are ei-
ther axioms or assertions. An axiom is either a class definition, a class axiom,
or a property axiom. Class definitions can be used to define subclass rela-
tionships, as well as certain property restrictions which hold for a particular
class. With class and property axioms, one can express more complex relation-
ships between classes and between properties such as boolean combinations
of class descriptions and transitive, inverse, and symmetric properties. Indi-
vidual assertions can be used to express class membership, property values,
and (in)equality of individuals.

OWL DL is defined in terms of an abstract syntax [109]. However, the
normative syntax for OWL is RDF/XML. The RDF representation of an
OWL DL ontology can be obtained through a mapping from the abstract
syntax. Listing 3.1 shows an OWL DL ontology, in abstract syntax, where
we define a class Person with a property hasChild, of type Person, and a class
Parent, which is defined as a person who has a child. Finally, we define an
individual John, who has a child Mary. OWL DL allows us to infer that John
is a Parent.

Note that from the type restriction on hasChild in the definition of Person,
and the fact that Mary is a value for this property, Mary is in fact a member of

34 3 The Semantic Web

Class(Person partial
restriction (hasChild allValuesFrom(Person)))

Class(Parent complete
Person
restriction (hasChild someValuesFrom(Person)))

ObjectProperty(hasChild)

Individual (John type(Person)
value(hasChild Mary))

Listing 3.1. OWL example using abstract syntax

the class Person. Although this inference seems to be intended in this scenario,
it cannot be assumed that this kind of inference is intended in general [31].

3.4 Rules for the Semantic Web

From the early days of the Semantic Web, rules have been seen as an important
paradigm for representing and reasoning with knowledge on the Semantic
Web.6 However, at the time of writing, activities have just gotten underway
towards standardization of a rules language for the Semantic Web.7

With ontologies, one can express knowledge about classes, class hierarchies,
properties, etc. Rules have a complementary expressiveness: with rules, one
can express knowledge in the form “if A then B”. An example which is often
used to motivate the use of rules is the “uncle” example, which says that “the
brother of a person’s parent is that person’s uncle”:

person(?x) ∧ parent(?x, ?y) ∧ brother(?y, ?z) ⇒ uncle(?x, ?z).

3.4.1 SWRL

SWRL [64] is an extension of OWL DL which adds the expressive power of
rules (without negation) to OWL; the above “uncle” example can be expressed
in SWRL.

The basic SWRL constructs are Horn-like rules. However, whereas Horn
rules have a conjunction of atomic formulas in the antecedent (body) of the
rule and a single atomic formula in the consequent (head) of the rule, SWRL
allows any OWL class description, property, or individual assertion in both
the body and the head of the rule. In this way, SWRL diverges from tradi-
tional rules systems, which are based on Logic Programming or Deductive
Databases.

6 http://www.ruleml.org.
7 http://www.w3.org/2005/rules.

3.4 Rules for the Semantic Web 35

person[child =>> person].
parent :: person.

X:parent :− X[child −>> Y], X:person.

Listing 3.2. Example F-Logic ontology

Because SWRL combines the full expressive power of function-free Horn
logic with an expressive description logic language, the key inferences tasks
(e.g. satisfiability and entailment) are in general undecidable for SWRL.

3.4.2 F-Logic

F-Logic [72], and, more specifically, the Horn subset of F-Logic extended with
negation, has been proposed as an ontology and rule language for the Semantic
Web [69]. Rules in F-Logic are similar to Horn rules, with the distinction that
besides atomic formulas, F-Logic rules also allow molecules in place of atomic
formulas. Note that although the syntax of F-Logic seems higher-order, the
language remains semantically in the first-order framework.

There are various kinds of molecules. An is-a assertion C:D states that
C is an instance of the class D; a subclass assertion C::D states that C is a
subclass of D. Data molecules of the form C[D ->> E] have the meaning that
the attribute D of the individual C has the value E. Signature molecules of
the form C[D =>> E] indicate that the class C has an attribute D and that all
values associated with this attribute are of type E.

To simplify matters, we shall focus only on a subset of F-Logic. We do
not consider parameterized methods or functional (single-valued) methods,
but instead consider only noninheritable methods. We also do not consider
compound molecules.

An important concept in F-Logic is object identity [68]. Each object (e.g. a
class, instance, or method) has a unique object identifier, where an object
identifier is in fact a term. In F-Logic, classes and methods are interpreted
intentionally, which means that class identifiers and method identifiers are
interpreted by themselves and not directly as sets or as binary relations, as is
the case with concepts and roles in description logics. Classes and methods are
first interpreted as objects in the domain, and these objects are then related
to sets of objects and sets of binary tuples, respectively.

The simple F-Logic ontology shown in Listing 3.2 models the concept
person, which has an attribute child with type person. The concept parent is a
subconcept of person, and the rule states that every person with a child is a
parent.

Note that in F-Logic there is no distinction between classes and instances.
An object identifier can denote a class, an instance, or an attribute, but there
is no separation in the signature Σ of the identifiers denoting any of these. The
advantage of such an overloaded concept of an object is that objects denote

36 3 The Semantic Web

classes, instances, and attributes depending on the syntactic context, thereby
allowing certain kinds of metastatements. For example, we might define an
attribute parent, which is not related to the class parent:

person[parent =>> person].

Both SWRL and F-Logic have been proposed as rules languages for the
Semantic Web. The main difference between the two proposals is that in
SWRL, the rules language is seen as an extension of the ontology language
OWL DL, whereas in the F-Logic (programming) proposal, ontologies are
modeled using rules.

3.5 Summary

In this chapter we have seen that Semantic Web technologies have the poten-
tial to overcome many of the limitations of the current Web by introducing
machine-processable annotations and formal languages for expressing knowl-
edge on the Web. Ontologies play a key role in enabling communication and
interoperation on the Web because they represent consensual terminologies
which can be used for automated processing.

RDF [75] is the language recommendation from the W3C for writing
machine-processable annotations on the Web. RDFS [20] and OWL [32] are
the language recommendations for writing ontologies on the Web. RDFS is an
inexpressive ontology language which offers the possibility to define classes,
class hierarchies, properties, property hierarchies, and domain and range re-
strictions. OWL extends RDFS towards a more expressive ontology language.
Some examples of the features of OWL are transitive, symmetric, and inverse
properties; local restrictions on properties; cardinality and existential property
restrictions; and boolean combination of classes.

Rules can be seen as a knowledge representation paradigm which is or-
thogonal to that of ontologies, yet can also be combined with ontologies
(e.g. SWRL [64]). However, it has also been argued that rules should be used
as the basis for an ontology language [69].

4

Web Services

Computer science is now in an important period of abstraction. A genera-
tion ago, we learned to abstract from hardware – now we are progressing
by learning to abstract from software. This abstraction is achieved through
service-oriented architectures (SOAs), which allow us to reuse and combine
software components via standardized interfaces, arbitrarily combining them
to serve our needs.

Web services and service-oriented architectures are rather new technologies
with the common goal of making software components and business applica-
tions available via standardized interfaces, within or across enterprise bound-
aries. These technologies will facilitate simpler development of distributed
applications and the integration of existing software solutions. The two major
application areas of Web service technologies are as follows:

• Enterprise application integration (EAI). The integration of legacy ap-
plications and systems, which have often been used reliably over years,
is becoming a significant, if not the most important, factor in IT. There
is a strong need for the development of flexible EAI solutions instead of
expensive reimplementation.

• E-commerce. The existing Web interfaces which various providers offer
to their customers mark only the beginning of an increasing economic
sector. Online stores and electronic marketplaces – empowered by Web
service technologies – could profit greatly by integrating and combining
their current services into more powerful, value-added services via common
software interfaces.

Web service technology promises to offer the technical infrastructure for
both these key areas.

Basically, Web services allow access to a functionality via the Web using
a set of open standards that make the interaction independent of implemen-
tation aspects such as the operatingsystem platform and the programming
language used. The core set of Web service standards enable a set of basic
interactions required in a service-oriented architecture, as depicted in Fig. 4.1.

38 4 Web Services

Fig. 4.1. Web service architecture

This figure illustrates the basic building blocks of a service-oriented archi-
tecture. In order for a service to be discovered, a service provider must first
publish the service. In most of the current proposals, this is done in some
central repository. A service requester is then able to issue queries to obtain a
reference to the desired service. This interaction is regulated by, for example,
the UDDI (Universal Description, Discovery and Integration) standard.

To invoke a service the requester needs to know how to do this (i.e. it needs
the interface definition). This information is provided by WSDL (Web Service
Description Language)[27]. Together with the SOAP standard, used for trans-
mitting data, this gives us three core standards (UDDI, WSDL, and SOAP)
that enable the basic interactions required by a service-oriented architecture.

It has to be emphasized that so far mainly syntactical aspects have been
addressed. Therefore, these technologies provide only a set of rigid services
that cannot adapt to changing environments without human intervention.
The human programmer has to be kept in the loop, and the scalability and
economy of Web services are limited [41].

Nevertheless, Web service technologies represent a milestone in making
the development of distributed applications in an SOA possible on large scale.
They provide, for the first time, widely accepted and widely used standards to
govern the communication between applications, facilitating their combination
into more complex entities. This is a major step beyond previous and existing
middleware standards, which have not reached the same level of consensus
and acceptance. This failure was partly due to a lack of agreement between
global players in the industry, and partly due to the lack of simple widespread,
application-independent protocols and standard formats for data exchange –
protocols and standards such as HTTP and XML upon which Web services
are built.

In this chapter, we first give an overview of the terminology used and the
underlying principles in Section 4.1, followed by a brief history and overview
of Web service technologies in Section 4.2. We proceed to a more detailed
analysis of UDDI, WSDL, SOAP, and other relevant Web service standards

4.1 Terminology and Principles 39

in Section 4.3. We summarize the current status of the most widely used Web
service technologies in Section 4.4.

4.1 Terminology and Principles

Before we continue, let us clarify the terms “service” and “Web service” them-
selves. The English word “service” is overloaded in its meaning [111]. In the
business world, a “service” normally denotes the provision of a general busi-
ness activity which provides a certain value to the customer [6]. In computer
science, in contrast, the term “service” is often used synonymously with “Web
service”, i.e. a software component accessible over the Internet via a standard-
ized interface. Preist [111] defines these terms as follows:

• Service. A service is defined as the provision of a concrete product or
abstract value in some domain. As an example, let us consider a user who
wants to book a flight from Madrid to Innsbruck. Following our definition
of a service, we mean the actual transport, fulfilling user constraints such
as a certain date. The provision of the service as such, and the contractual
issues around this service provision, are independent of how the supplier
and the provider interact. It is irrelevant whether the requester goes to
an airline ticket office or uses the airline’s Web site to book the flight. We
understand the term “service” in this sense, that is, as a provision of value.

• Web service. Following Preist’s definition, Web services are defined as com-
putational entities accessible over the Internet (using Web service stan-
dards and protocols) via platform- and programming-language-
independent interfaces. Returning to our previous example, an airline
might provide a software component accessible via Web service standards,
i.e. a Web service to request the booking of a flight; the Web service is an
electronic means to request a service, but not the service itself. We under-
stand the term “Web service” as a means to request a service over standard
protocols, described using widely accepted standards. Thus, a Web service
is a means to consume an actual service, or to place a contract for an
actual service.

This book is about Web services, and we shall use the terms “service” and
“Web service” synonymously to mean the latter in the remainder of this book
unless explicitly indicated otherwise.

A further term often used in connection with Web services is the “service-
oriented architecture”, which we introduced at the beginning of this chapter.
Since the term and its definition are still heavily discussed, we shall merely
reiterate and outline the basic principles that are common to all definitions:1

1 This list has been extracted from a message by J.P. Morgenthal on
service-orientated-architecture@yahoogroups.com and subsequent
discussions; see http://groups.yahoo.com/group/service-orientated-

architecture/message/2709.

40 4 Web Services

1. Loose coupling. Every service is atomic, self-describing, accessible, declar-
ative, stateless and composite.

2. Contracted. Services in an SOA are represented by a contract that de-
scribes its inputs, outputs, access policies, quality-of-service requirements,
and error-handling procedures.

3. Discoverable. Services should be able to be discoverable at the time of
execution.

4. Addressable. Services should be uniquely identifiable in a network.
5. Distributed. Services in an SOA are separated by geographic and machine

boundaries and, therefore, must be good netizen applications, i.e. they
must be developed with the ability to recover from loss of communication.

6. Point-to-Point. At any point in time one consumer uses one and only one
producer.

In particular, the stateless nature of services (1), the pure point-to-point be-
havior (6), and discovery at execution time (3) deserve a closer look. We shall
not go into the details in this book, but refer to [42, 79] for a more in-depth
discussion of the related issues.

The term “service”, in connection with SOAs, is again often used synony-
mously with “Web service”. However, in general, services in an SOA are not
necessarily Web services in the strict sense. Rather, they simply denote any
software component that is accessible over an arbitrary protocol. Platform in-
dependence, programming-language independence, and the use of WSDL are
not necessary criteria.

4.2 The Origins of Web Services

Efforts towards the development of common standards for the development
of distributed applications have a long history in computer science. Following
the usual terminology in software engineering, technologies which offer an
abstraction layer over the actual communication media are often subsumed
under the general term “middleware”.

Numerous earlier attempts to establish a single standardized middleware
solution in the past either failed completely or were restricted to use within
enterprise boundaries. In particular there has not been vendor-spanning agree-
ment on how such a standardization should look.

In the early 1980s, Birell and Nelson [15] introduced the Remote Pro-
cedure Calls (RPC), the first widespread technology for invoking proce-
dures in distributed systems. The RPC definition was released in an ab-
stract fashion, hiding implementation details from the developer. In com-
bination with a standardized interface description language, RPC offers a
platform- and programming-language-independent mechanism for embedding
distributed procedure calls in applications.

The additional requirements of real-world applications and the wide ac-
ceptance of the object-oriented paradigm have led to various extensions of

4.2 The Origins of Web Services 41

RPC, such as Transactional RPC, Object Brokers, Remote Method Invo-
cation (RMI), Transaction Processing (TP) monitors, and message-oriented
middleware (MOM).

Comprehensive middleware architectures such as CORBA – introduced by
the Object Management Group (OMG) in the early 1990s – already allowed
for advanced features such as dynamic selection and binding of services. Unfor-
tunately, these architectures did not reach the expected degree of acceptance
that would be required to reach the actual goal of a standardized middleware
platform: effective, simple means of communication for distributed software
components catering for painless solution of integration problems within an
organization on the one hand and across enterprise boundaries on the other
hand.

The technologies which are nowadays subsumed under the term “Web
services” have several advantages compared with their predecessors. These
advantages are the reason for the wider acceptance of Web services and guar-
antee a higher probability of long-term success:

• Communication between Web services relies on widely accepted protocols
such as HTTP.

• SOAP [92] offers a protocol for message exchange between Web services,
where XML is used as a unified exchange format. The growing acceptance
of XML as a data interchange format and of related technologies consider-
ably eases the pain of establishing syntactic interoperability between Web
services.

• Similarly to RPC and CORBA, there exists a standardized interface de-
scription language, WSDL [27], which is currently gaining increasing ac-
ceptance.

• As opposed to a pervasive, complex infrastructure, which would solve all
the problems of the interplay of distributed applications at once, the “Web
services Technology Stack” consists of a modular family of standards, each
of which tackles certain subproblems.

• Finally, the “global players” seem to have come to an agreement that the
solution to interoperability problems cannot be found in dozens of pro-
prietary approaches; instead, their research and development departments
are jointly engaging in the development of standard recommendations in
international standardization bodies.

Summarizing, Web service technologies in the narrow sense build upon
four main components:

• An agreed transport protocol.
• A platform-independent message description format.
• A language for Web service interface description that describes which op-

erations, and with which messages a service can offer.
• A registry for publication and discovery of available services.

42 4 Web Services

The first component can, in principle, be realized by any of the common
transport protocols such as SMTP or FTP. The most popular protocol in the
context of Web services is HTTP. HTTP has the advantage of allowing the
reuse of existing infrastructure while catering for the preexisting know-how of
potential users.

The second component is realized by SOAP [92]. SOAP is a specifica-
tion for standardization of the exchange of XML-coded messages. Moreover,
SOAP specifies the binding to HTTP as an underlying communication proto-
col between two addressable service partners (“endpoints”). Communication
via SOAP over HTTP is, in a sense, a solution to existing problems with
approaches such as RMI and CORBA. The shortcomings of the latter two
include imposing tight coupling between service partners and the inability to
reuse the open “Web infrastructure”: firewalls usually block special propri-
etary communication protocols in common IT across enterprise boundaries.

The Web Service Description Language (WSDL) [27] serves as the third
component for XML-based description of interfaces. WSDL allows a distinc-
tion between the description of the abstract functionality (operations) that
a Web service provides and the details of how to access the service. On the
one hand, operations, along with their input and output parameters, are de-
scribed; on the other hand, the addresses at which the service is invocable
(“endpoints”) and the supported transport protocols can be described inde-
pendently.

Finally, Universal Description, Discovery and Integration (UDDI) [10] pro-
vides interfaces to publish (advertise), browse, and query existing Web ser-
vices. UDDI thus realizes the fourth main component in Web-services-based
middleware solutions.

Excellent overviews of the predecessors of current Web service technologies
and the current state of the art of “syntactical”2 Web service standards are
provided by Alonso et al. [2] and Weerawarana et al. [133].

4.3 The Web Service Technology Stack

In this section we give further details on the current Web service technology
stack, covering the three main standards: SOAP, WSDL and UDDI.

4.3.1 SOAP

The overall goal of the Simple Object Access Protocol (SOAP), as the first
version of this protocol, published as a W3C Note in May 2000, was called,
is the provision of a messaging framework for peers communicating messages

2 We talk about “syntactical” standards here, to emphasize the fact that these
technologies do not yet tackle the semantic annotation of (Web) services.

4.3 The Web Service Technology Stack 43

in XML format. In June 2003, SOAP 1.23 became a W3C Recommendation
and has been gaining momentum ever since, being adopted in most Web-
service-based applications. While in theory (and also in practice), instance
messages of services communicating over HTTP could be encoded directly in
HTTP/get or post requests, SOAP adds a more rigid framework especially
tailored for XML message exchange on top, in fact, nowadays the term “Web
services” is often used synonymously for “Web services communicating over
SOAP” which gives us justification enough to further explain the basics of
this fundamental standard protocol here.

SOAP aims to achieve maximum acceptance and flexibility by the provi-
sion of a framework in which application-specific information may be conveyed
in an extensible manner, without making any up-front commitment to the se-
mantics of application-specific data. Also, SOAP provides a full description of
the required actions that must taken by a SOAP node upon receiving a SOAP
message. This can, for example, be achieved by including a mustUnderstand
header, i.e. an XML element that describes processing instructions such as
requiring support for some transaction protocol. Without specifying a con-
crete set of instruction, the SOAP standard specifies that if such an element
cannot be understood by a receiving node, it must not process the request
but instead issue a fault message.

A SOAP message itself is just an XML document. Listing 4.1 shows a
simple example of a typical SOAP document that is used to invoke a weather
service. Within a SOAP envelope, optional header and body elements are
present. To keep the example short, we have omitted the header element,
which normally contains processing instructions as explained in the previous
paragraph. The body contains the actual payload of the message. In this case
it is an XML node – conforming to the schema definition of the GetWeather
message of some service within the example – containing two strings indicat-
ing a city, described by its name and country. Additionally, SOAP defines a
standardized way of handling faults in a message exchange by defining spe-
cific XML elements for it (such as faultcode and faultstring, which eases
automatic processing.

<?xml version=”1.0” encoding=”UTF−8”?>
<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>

<soap:Body>
<GetWeather xmlns=”http://www.webservicex.net”>

<CityName>Innsbruck</CityName>
<CountryName>Austria</CountryName>

</GetWeather>
</soap:Body>

</soap:Envelope>

Listing 4.1. An example SOAP message

Particulary interesting in the Web context is the protocol-binding frame-
work of SOAP. Basically, SOAP messages can be sent using a variety of pro-
3 For various reasons, the original acronym SOAP no longer represents the name

in the most recent version.

44 4 Web Services

tocols, although in the Web context SOAP is usually used over HTTP. There
are of course other frequently used and well-defined protocols, for example
email4. When a SOAP message is sent over HTTP, basically just an HTTP
header is added to the SOAP envelope. In this way, SOAP can leverage the
infrastructure that is already in place for the underlying protocol. Thus, the
problems with firewalls and Internet routers that occur when using traditional
Remote Procedure Calls are eliminated.

POST: /stockquote.asmx
SOAPAction: ”http://www.webservicex.net/GetQuote”
Content−Type: text/xml; charset=UTF−8
Content−Length: 3000
[...]

Listing 4.2. An example SOAP HTTP header

Listing 4.2 shows a typical header that is used when a SOAP message is
sent over HTTP. Only the header is dependent on the actual transport proto-
col used; the SOAP messages transferred do not need to change for different
protocols. The header contains standard elements of an HTTP header, such
as POST, Content-Type, and Content-Length. Only the SOAPAction field is
an addition (it is mandatory in SOAP 1.1).

In summary, SOAP is an XML format for message exchange that can
be bound to different underlying transport protocols. It allows one to wrap
XML messages in an envelope, possibly containing additional routing or fault-
handling information. SOAP has become a popular way to transport XML
messages in the current Web service stack.

4.3.2 WSDL

The Web Service Description Language is an XML format to describe inter-
faces of software components. WSDL essentially allows one to describe a set
of operations and their input and output messages. The initial WSDL 1.1
standard was published by the W3C in March 2001 as a Note. The succes-
sor, version 2.0, is (at the time of writing) a candidate recommendation. The
scope, of describing interfaces remains in version 2.0, although some essential
details have changed.5 The changes include, for example, the removal of the
message construct; the support for operator overloading has been discontin-
ued; and some constructs have been renamed and their usage further clarified.
Figure 4.2 illustrates the structure of both versions of the standard and how
they relate.

Currently there is not yet mature tool support for the WSDL 2.0 spec-
ification, and thus we limit ourselves for the more detailed descriptions to
WSDL 1.1. It is an extensible standard, allowing different typing mechanisms

4 http://www.w3.org/TR/2002/NOTE-soap12-email-20020626.
5 Initially it was planed to use the version number 1.2, but after the number of

changes was recognized it was decided to use version number 2.0.

4.3 The Web Service Technology Stack 45

and several binding technologies, but in this book we shall restrict our ex-
planations to typical usage in the Web context. In the following we will use
exclusively XML Schema as the language for typing and SOAP as as binding
technology.

Fig. 4.2. Structures of WSDL 1.1 and WSDL 2.0

The left box in Fig. 4.2 shows the various elements of WSDL 1.0. The
top three boxes in the figure show generic elements of WSDL. PortTypes can
be seen as interfaces that may define several operations. The definition of
the inputs and outputs is encapsulated in a message construct that refers to
types defined in the generic type section of a WSDL file. The type section can,
basically, include one or more XML schemas that contain typing information.

The bottom two boxes in Fig. 4.2 represents the binding of the interface
definition (PortType) to a specific endpoint address and message format. The
endpoint indicates the physical address where messages can be sent to. In this
way, a WSDL specification separates the signature description of an interface,
i.e. operation names with inputs and outputs in a PortType, from the bindings
to a concrete transport protocol and an actual endpoint.

Listing 4.3 shows how inputs and outputs are defined in a WSDL file6 and
how they can be linked to an operation. The type section can contain multiple
XML Schema definitions. The relevant definition in our example is the element
definition for getWeather. It indicates that there is a child element CityName
and CountryName of the type “string”. At the bottom of the listing one can
see a portType definition, alongside one operation GetWeather. The input
and outputs are not directly linked to XML elements, but to messages, which
in turn reference the previously defined types.

6 Taken from http://www.webservicex.net/globalweather.asmx?WSDL

46 4 Web Services

[...]
<wsdl:types>

[...]
<s:element name=”GetWeather”>

<s:complexType>
<s:sequence>

<s:element minOccurs=”0” maxOccurs=”1” name=”CityName” type=”s:string” />
<s:element minOccurs=”0” maxOccurs=”1” name=”CountryName” type=”s:string” />

</s:sequence>
</s:complexType>

</s:element>
[...]

</wsdl:types>
<wsdl:message name=”GetWeatherIn”>

<wsdl:part name=”parameters” element=”tns:GetWeather” />
</wsdl:message>
[...]

<wsdl:portType name=”GlobalWeather”>
<wsdl:operation name=”GetWeather”>

<wsdl:input message=”tns:GetWeatherSoapIn” />
<wsdl:output message=”tns:GetWeatherSoapOut” />

</wsdl:operation>
[...]

Listing 4.3. A signature definition in a WSDL file

[...]
<wsdl:binding name=”GlobalWeatherSoap” type=”tns:GlobalWeather”>

<soap:binding transport=”http://schemas.xmlsoap.org/soap/http” style=”document” />
<wsdl:operation name=”GetWeather”>

<soap:operation soapAction=”http://www.webservicex.net/GetWeather” style=”document” />
<wsdl:input><soap:body use=”literal” /></wsdl:input>
<wsdl:output><soap:body use=”literal” /></wsdl:output>

</wsdl:operation>
[..]

</wsdl:binding>
<wsdl:service name=”GlobalWeather”>

<wsdl:port name=”GlobalWeatherSoap” binding=”tns:GlobalWeatherSoap”>
<soap:address location=”http://www.webservicex.net/globalweather.asmx” />

</wsdl:port>
[...]

</wsdl:service>

Listing 4.4. Sample WSDL binding

Listing 4.4 maps the abstract definition to a concrete protocol. The
GlobalWeatherSoap binding defines a binding using SOAP over HTTP. Fi-
nally, in the service element, the actual endpoint (soap:address) is declared.

With this short example, we have illustrated a number of features of
WSDL: (1) XML Schema can be reused for type declaration; (2) interfaces
(operation + PortType) are defined independently of the transport protocol;
(3) an interface can be easily reused for several different bindings.

4.3.3 UDDI

UDDI offers an interface which allows business partners and (external) service
providers to dynamically find one another. An UDDI server is accessible via a
Web service interface and offers operations such as publication and querying
of services.

4.3 The Web Service Technology Stack 47

UDDI provides a data model for services and business entities. More con-
cretely, it provides three categories of information: white, yellow, and green
pages. This model provides related information to a service such as the name,
address, telephone number, and other contact information of a given appli-
cation; basically, any information that categorizes applications, and technical
information about the Web services provided by a given application.

Initially, big vendors such as Microsoft and SAP operated public UDDI
services and connected them to an UDDI Business Registry (UBR) as a single
entry point for service searches. However, UDDI has not been successful in
the area of public Web services. UBR has been discontinued, and only smaller
providers such as XMethods still provide an UDDI interface as an additional
means for accessing their service repository.

The continued development of the UDDI product, however, indicates that
the technology is still relevant for intranet and extranet usage. We shall briefly
take a more detailed look at what information can be advertised:

• Application information. This is contained in a business entity object,
which in turn contains information about services, categories, contacts,
URLs, and other things necessary to interact with a given application.

• Service information. This describes a group of Web services. These are
contained in a business service object.

• Binding information. The technical details necessary to invoke a Web ser-
vice. This includes URLs, information about method names, argument
types, and so on. The binding template object represents this data.

• Service specification detail. This is metadata about the various specifica-
tions implemented by a given Web service. These are called tModels in the
UDDI specification.

To illustrate the categorization information in UDDI we have browsed the
XMethods UDDI repository using the Web Service Explorer7 and depicted
the information for the GlobalWeather service used in the previous subsec-
tion (Listing 4.3). Using key value pairs, one can assign a service to specific
categories, similar to using a geographical code or a standard product classi-
fication such as UNSPC.8

An interesting remark on the annotation can be made here: the key value
pairs in the annotation provide good hints about what the service does; how-
ever, just reusing standard taxonomies and not making the context explicit
does leave some questions open. For example, the geo taxonomy unambigu-
ously describes a location; however, by just placing it in the context of a
service interface the intended meaning remains unspecified. In this case the

7 The Web Service Explorer is a client that can browse and edit UDDI entries as
part of the Eclipse Web Tools Platform (WTP) project; see http://www.eclipse.
org/webtools.

8 To illustrate the annotation, we have manually added this information to the
service, since the original public service has only minimal information.

48 4 Web Services

Fig. 4.3. The GlobalWeather service viewed in an UDDI browser

location specifies the physical location of the service endpoint, however one
might also interpret it as the “scope” of the service. A human can easily de-
duce from the interface name GlobalWeather that this is not the case, but
for a software program interpreting the description, this is less obvious.

The description of published services also contains a link to a WSDL file
and, specifically, also to concrete interfaces (port types). Using this link, UDDI
provides a machine-processable access to the interface description of an service
and therefore, theoretically, also provides the possibility of automatic invoca-
tion of services. However we face the problem that both WSDL and UDDI
offer a mainly syntactic description.

4.3.4 Related WS-* Standards

A series of related standards and recommendations complete the technologies
that are nowadays commonly referred to as “Web services”. The components
described so far allow only the description of interactions that follow a simple
in/out process. However, typical business processes are more complex and
require descriptions of more complex interaction patterns.

The Business Process Execution Language for Web Services (BPEL4WS)
[4] allows one to describe such processes on the basis of services described
using WSDL. BPEL is an XML-based language for describing an executable
process over a series of Web service operations. This allows one to aggregate
atomic service operations into a more meaningful service component.

Note that WSDL, in principle, already allows one to group a set of related
operations together in a description; however, it provides no means to describe
any restriction on the possible sequences that those operations can be invoked
in. BPEL4WS can describe such concrete sequences, for example to first invoke
first a login operation, followed by subsequent search and buy operations.

4.4 Web Services in Reality 49

The further standards that complement the core specification are often
aggregated under the acronym “WS-* standards”. They have been developed
by standardization bodies such as the W3C9 and OASIS.10 Without claiming
completeness, or discussing them extensively, we shall mention some of them
here:

• WS-Security [97] standardizes a SOAP extension to encode security-
related information.

• WS-Policy [8] is a standard that enables the description of supported prop-
erties of a service, such as security level, and language.

• WS-PolicyAttachment [7] allows one to link policy descriptions with
WSDL descriptions.

• WS-Trust [3] can describe trust relationships between business partners.

4.4 Web Services in Reality

It is hard to assess the total spread of this technology. First, it is at present
mainly used within or between companies, and second, there is no reliable
way to count the publicly available Web services. However, if one considers the
behavior of software vendors as an indicator for the adoption of the technology,
it is a tremendous success. There are numerous different platforms that allow
the easy publication of software components as Web services. The technology
is an integral part of the Microsoft .NET environment and of various platforms
for Java-based solutions. Even script languages such as PHP provide libraries
for easy publication and consumption of Web services. The support is not
limited to the technology providers; application vendors such as SAP and
Oracle have made Web services an integral part of their products.

This indicates that the technology has indeed been widely adopted; how-
ever, of these many services, relatively few are made publicly available. The
big public UDDI-based repositories from IBM, Microsoft, and SAP have re-
cently been shut down. The majority of registered services have been toy
examples or simple tests by technology enthusiasts. Currently, several portal
sites have begun to fill this void by providing a central point of registration.
One such portal is StrikeIron,11 which not only allows the registration of Web
services, but also serves as a reseller of Web service usage contracts. Having
contracts with multiple smaller providers allows StrikeIron to offer compa-
nies the ease of aggregated invoicing and contract management. The services
available range from currency conversion services, and various forms of SMS
or fax services (many available without charge), to commercial offers, such as
address validation and services that perform printing and mailing of electronic
letters via surface mail delivery.

9 http://www.w3.org.
10 http://www.oasis.org.
11 http://strikeiron.com.

50 4 Web Services

Although UDDI does not at present play a huge role in the market for
public repositories, it seems (given the product range of vendors) that it plays
an important role in intra- and inter-enterprise usage. Nearly all of the publicly
available services use SOAP as the transport protocol and XML Schema for
type information.

4.5 What’s Missing in Web Services?

So far, we have presented the pillars of the next generation of Web technolo-
gies: we have introduced the basic Web technologies, followed by the vision
of the future Web, the Semantic Web. We then discussed Web services as a
means to provide an interoperable platform for application integration using
Web technologies. However, as we can see in Fig. 4.4, the next obvious step is
still missing, and this is what this book is all about. The term “Semantic Web

Fig. 4.4. The evolution of the Web

services”, probably first coined in [90], stands for the automation of service us-
age tasks such as discovery, selection, composition, and enactment of suitable
services. This task is accomplished by making services themselves machine-
processable. Just like the way in which the Semantic Web promises to make
the static content of the Web machine-processable via semantic annotations,
the idea of applying similar techniques to Web services is very appealing.

The potential benefits of Semantic Web services have led to the establish-
ment of an important research area, both in academia and in industry. Several
initiatives have appeared for semantically annotating Web services, providing
various descriptions of Web services and their related aspects, which, in turn,
provides various kinds of support for discovery and composition.

Before going into the details of our approach, namely the Web service
Modeling Ontology, and related efforts in the remainder of this book, we shall
spend the rest of this first introductory part reviewing some more general
considerations.

4.5 What’s Missing in Web Services? 51

The term “Semantic Web services” comprises two building blocks that
could be fruitfully combined towards the automation of service usage:

• The Semantic Web is about adding machine-processable semantics to data.
The computer can “understand” the information and therefore process it
on behalf of the human user.

• Web services aim to employ the Web as a global infrastructure for dis-
tributed computation, for integrating various applications, and for the au-
tomation of business processes. The Web will be not only the place where
human-readable information is published, but also the place where global
computing is realized.

Both trends are visualized in Fig. 4.4. This illustrates the two natural
aspects of the evolution of the Web. Web services, with their ability to provide
an abstraction to computational resources, turn the existing Web into a more
dynamic environment, yet the Web maintains its purely syntactical nature.

The vision of Semantic Web services is to describe and annotate the various
aspects of a Web service using explicit, machine-understandable semantics,
enabling the automatic location, combination, and use of Web services. The
work in the area of the Semantic Web is being applied to Web services in
order to minimize the intervention of the human user. Semantic markup will
be exploited to automate the tasks of discovering services, executing them,
composing them, and enabling seamless interoperation between them [87],
thus, enabling intelligent Web services.

The description of Web services in a machine-understandable fashion is
expected to have a great impact in the areas of e-commerce and enterprise
application integration, as it can enable dynamic and scalable cooperation
between different systems and organizations.

Current description standards for Web services such as WSDL have one
significant drawback. To a large extent, they are restricted to the syntactic as-
pects of service interaction. They allow the description of how the service can
be invoked, which operations may be called, which policies may be supported,
etc. However, what the service does and in what order its operations have to
be called in order to achieve a certain functionality is only, if ever, described in
natural language in the entries or comments of a WSDL description or UDDI
entry.

We can imagine that the trend of Web services populating the Web will
explode in a similar way to the way in which the number of static pages on the
Web did before. Thus, when looking for suitable services to achieve a certain
task, we face obstacles similar to those we face as in filtering information from
the overwhelming amount of data on the current human-readable “static”
Web. Annotations by means of Semantic Web technologies are again the big
hope. The final convergence of these technologies is essential for the success
of Web service technologies on the scale of the Web.

The requirements for semantic descriptions of Web services correspond in
principle to the requirements for common Web service technologies. However,

52 4 Web Services

there are small but important differences, such as the use of ontologies as
shared vocabularies, which promises a higher degree of automation. In partic-
ular, Semantic Web technologies are expected to have the most potential in
the following service-related tasks:

• Discovery. Before a service published on the Web or within an enterprise
can be used in a distributed application, it must first be located. Current
technologies such as UDDI support this step only with keyword search,
although limited forms of standardized vocabularies such as UNSPC12 are
starting to be more widely used. As opposed to such standards, semantic
annotations of service capabilities via decentralized ontologies, intercon-
nected via logical axioms, by which inference can determine which ser-
vices match a goal, can be expressed equally well in ontological terms.
These descriptions could also involve more fine-grained notions such for-
mal descriptions of preconditions and postconditions, and of the inputs and
outputs of the service using terms specified in an ontology.

• Negotiation. Whenever a suitable provider has been determined to serve a
certain goal, it is necessary to negotiate a service instance from the possibly
many services that a particular provider can offer. This includes establish-
ment of trust policies, determination of payment modalities, selection of
offers, etc., where corresponding semantic annotations are required. For
the purpose of automating this task, it is important that a semantic ser-
vice description not only specifies the functionality of a service, but also
includes nonfunctional aspects, such as supported policies, and security
protocols.

• Composition. In cases where a particular goal cannot be achieved by means
of a single Web service, semantic descriptions can at least help to deter-
mine a promising combination of multiple Web services to achieve the re-
quested functionality. Having learned the lessons of 20 years of AI research,
we would be naive to expect promises to be fulfilled that efforts towards
automated programming have not yet fulfilled. Nevertheless, clever selec-
tion of services and lightweight planning or scheduling can, hopefully, ease
the pain of manual integration. Composition requires not only the seman-
tic annotation of the overall capabilities of a service, but also a behavioral
description of how to interact with the Web service, in order to achieve a
certain functionality.

• Invocation. After a (combination of) services has been selected, the final
step is execution. To this end, possible input and output values need to be
extracted from the semantic goal description and adapted to the negotiated
message formats and communication protocols. Ideally, monitoring and
transaction control should be supported during invocation.

12 United Nations Standard Products and Services Code; see http://www.unspsc.

org.

4.6 Summary 53

Most approaches towards achieving Semantic Web services, i.e. automation
of the above-mentioned tasks, aim at the annotation of Web service descrip-
tions per service, by extending or complementing current technologies around
WSDL, SOAP, UDDI, etc. with semantic annotations.

4.6 Summary

In this chapter, we have learned about Web service technologies. We discussed
some fundamental principles of what service-oriented architectures consist of,
such as loose coupling, contractibility, discoverability, and addressability in a
distributed, open environment. We found that Web service technologies could
to some extent to be viewed as “yet another middleware solution”, though
with some differences from their predecessors:

• Web services, for the first time have broad support in joint standardization
efforts by the global players instead of previous vendor-specific solutions
(DCOM, etc.).

• Web services are not an all-in-one framework to solve it all (like CORBA),
but a family of (i) simple, (ii) modular, (iii) interrelated, and (iv) extensible
standards.

• Web services rely on and build upon Web protocols such as HTTP, thus
allowing the use of widely supported technologies with a large community
of developers and users behind them.

• All Web service technologies are based fundamentally on XML as the
exchange and message format of choice.

We have discussed the three pillar technologies for making the Web ser-
vices vision of interoperable services on the Web scale work: SOAP provides
an XML-based protocol and messaging mechanism; WSDL allows one to de-
scribe and advertise Web service interfaces in a way that exposes enough detail
about the supported operations and protocol bindings to enable a developer
to integrate the service into his/her own application, abstracting away from
implementation- specific details. UDDI has been proposed as a registry infras-
tructure which allows one to register and publish service advertisements and
to support discovery. More standards for policy negotiation, and for describ-
ing security and trust-related information, etc. are on the way to complete
the family of technologies subsumed under the term “Web services”.

There is still a big obstacle to automation of the use of these technologies
and service-oriented architectures in general though: Web services described
through WSDL provide service endpoints in such an architecture, but there
could soon be several thousands of services capable of composing any required
specific application.

Web services allow easy adaption and integration by deploying machin-
ery of XML; however, they do not let you express what a service actually

54 4 Web Services

does. For instance, if services use different XML tags to annotate their opera-
tions/messages, then it is not possible to find out that two operations offered
by different services in different WSDLs actually have the same function.

Similarly, keyword-based search in natural-language descriptions in a
repository, as provided by UDDI, might well be insufficient in such realis-
tic scenarios. The XML message formats used by different services might still
be syntactically incompatible, leaving the integration effort to a human pro-
grammer.

Finally, we have outlined the potential of combining the ideas of the Se-
mantic Web and Web services. The two are complementary trends that are
about to transform the Web from being for humans only into a network that
involves automated communication between computers. These advances will
provide support for human interaction at a much higher level than what is
possible with current Web technologies:

• The Semantic Web adds machine-processable semantics to data.
• Web services promise to provide smooth and painless integration of arbi-

trary applications.

Eventually, the combination of these two trends in what is called “Semantic
Web services” promises a fully mechanized Web for computer interaction,
where humans organize their collaboration and their business relationships.

So, what we really need are provisional metadata annotations about the
semantics of services, using formal languages with an agreed meaning. Reflect-
ing what we have already learned in Chapter 3, this is just what Semantic
Web technologies are about. The tempting challenge that this book is aiming
at is to combine these two cornerstones, the Semantic Web and Web services.

Part II

The Web Service Modeling Ontology

5

Introduction to WSMO

The Web Service Modeling Ontology (WSMO) [116, 117] is aimed at describ-
ing all relevant aspects related to general services that are accessible through
a Web service interface. Its ultimate goal is to enable the (total or partial)
automation of the tasks (e.g. discovery, selection, composition, mediation,
execution, and monitoring) involved in both intra- and inter-enterprise inte-
gration of Web services. WSMO has its conceptual basis in the Web Service
Modeling Framework (WSMF) [41], and aims at refining and extending this
framework and developing a formal ontology and set of languages. Before we
describe all of the concepts of WSMO in detail, we give an overview of the
design principles of WSMO, its core elements, and the language used to define
the elements that are part of the conceptual model of WSMO.

5.1 WSMO Design Principles

WSMO provides ontological specifications for the core elements of Seman-
tic Web services. In fact, Semantic Web services are aimed at producing an
integrated technology for the next generation of the Web by combining Se-
mantic Web technologies and Web services, thereby turning the Internet from
a information repository for human consumption into a worldwide system for
distributed Web computing. Therefore, appropriate frameworks for Seman-
tic Web services need to integrate the basic Web design principles, the design
principles defined for the Semantic Web, and design principles for distributed,
service-oriented computing on the Web. WSMO is therefore based on the fol-
lowing design principles:

• Web compliance. WSMO inherits the concept of the URI (Universal Re-
source Identifier) for unique identification of resources as the essential
design principle of the World Wide Web. Moreover, WSMO adopts the
concept of namespaces for denoting consistent information spaces, and
supports XML and other W3C Web technology recommendations, as well
as the decentralization of resources.

58 5 Introduction to WSMO

• Ontology-based. Ontologies are used as data models throughout WSMO,
meaning that all resource descriptions and all data interchanged during
service usage are based on ontologies. Ontologies are a widely accepted
state-of-the-art knowledge representation, and have thus been identified
as the central enabling technology for the Semantic Web. The extensive
usage of ontologies allows semantically enhanced information processing
and support for interoperability; WSMO also supports the ontology lan-
guages defined for the Semantic Web.

• Strict decoupling. Decoupling denotes that WSMO resources are defined
in isolation, meaning that each resource is specified independently without
regard to possible usage or interactions with other resources. This complies
with the open and distributed nature of the Web.

• Centrality of mediation. As a complementary design principle to strict
decoupling, mediation addresses the handling of the heterogeneities that
naturally arise in open environments. Heterogeneity can occur in terms of
data, the underlying ontology, the protocol, or the process. WSMO recog-
nizes the importance of mediation for the successful deployment of Web
services by making mediation a first-class component of the framework.

• Ontological role separation. Users or more generally, clients exist in specific
contexts which will not be the same as those of the available Web services.
For example, a user may wish to book a holiday according to preferences
about weather, culture, and childcare, whereas Web services will typically
cover airline travel and hotel availability. The underlying epistemology
of WSMO differentiates between the desires of users or clients and the
available services.

• Description versus implementation. WSMO differentiates between the de-
scriptions of elements of Semantic Web services (description) and exe-
cutable technologies (implementation). While the former requires a con-
cise, sound description framework based on appropriate formalisms in or-
der to provide concise semantic descriptions, the latter is concerned with
the support of existing and emerging execution technologies for the Seman-
tic Web and Web services. WSMO aims to provide an appropriate onto-
logical description model, and to be compliant with existing and emerging
technologies.

• Execution semantics. In order to verify the WSMO specification, the for-
mal execution semantics of reference implementations such as WSMX, as
well as other WSMO-enabled systems, provide the technical realization of
WSMO.

• Services versus Web services. A Web service is a computational entity
which is able to achieve a user’s goal by invocation. A service, in contrast,
is the actual value provided by this invocation [6, 111].1 WSMO provides

1 Note that [111] also distinguishes between a computational entity in general and
a Web service, where the former does not necessarily have a Web-accessible in-
terface. WSMO does not make this distinction.

5.2 Top-Level Elements of WSMO 59

a means to describe Web services that provide access (searching, buying,
etc.) to services. WSMO is designed as a means to describe the former and
not to replace the functionality of the latter.

5.2 Top-Level Elements of WSMO

Following the key aspects identified in the Web Service Modeling Framework,
WSMO identifies four top-level elements as the main concepts: ontologies,
services, goals, and mediators (Fig. 5.1). These have to be described in order
to describe Semantic Web services:

Goals

Mediators

Ontologies Web Services

Fig. 5.1. WSMO core elements

As introduced in Chapter 3, ontologies provide the terminology used and
are the key element for the success of Semantic Web services. WSMO de-
scribes an epistemology of ontologies, i.e. the conceptual building blocks such
as concepts and relations.

The actual Web services are computational entities that provide some
value in a certain domain. Web service descriptions consist of their capability,
their interfaces, and their orchestration–the internal workings of the service.

Goals describe aspects related to user desires with respect to the requested
functionality; again, ontologies can be used in order to define the domain
terminology used to describe the relevant aspects of goals. Goals model the
user’s view of the Web service usage process and therefore are a separate
top-level entity in WSMO.

Finally, Mediators describe elements that handle interoperability problems
between different elements, for example two different ontologies or services.
We envision mediators as a core concept for resolving incompatibilities on the
data, process, and protocol levels, i.e. they will be used in order to resolve
mismatches between different terminologies (data level), to communicate be-
tween services (protocol level), and to combine Web services and goals (process
level).

These top-level elements of WSMO are discussed and defined in Chapter
6.

60 5 Introduction to WSMO

5.3 The Language for Defining WSMO

WSMO is meant to be a metamodel for aspects of Semantic Web services. To
introduce this model, we make use of the Meta-Object Facility (MOF) [103]
specification, which defines an abstract language and framework for specifying,
constructing, and managing technology-neutral metamodels. MOF defines a
metadata architecture consisting of four layers, namely:

• The information layer comprises the data we want to describe.
• The model layer comprises the metadata that describe the data in the

information layer.
• The metamodel layer comprises the descriptions that define the structure

and semantics of the metadata.
• The metametamodel layer comprises the description of the structure and

semantics of the metametadata.

In terms of the four MOF layers, the language in which WSMO is defined
corresponds to the metametamodel layer; WSMO itself constitutes the meta-
model layer; the specifications of the ontologies, services, goals, and mediators
constitute the model layer; and the actual data described by the ontologies and
exchanged between Web services constitute the information layer. Figure 5.2
shows the relation between WSMO and the MOF layered architecture.

MOF

meta model

model

information

meta meta model

M2 layer

M1 layer

M3 layer

M0 layer

WSMO Descriptions

WSMO

Concrete Web Services, Domains and Data to be described

Fig. 5.2. The relation between WSMO and MOF

The MOF metamodeling construct used most in the definition of WSMO
is the Class construct (and, implicitly, its class generalization (sub-Class)
construct), together with its Attributes, the type of the Attributes, and their
multiplicity specifications. In defining WSMO, the following assumptions are
made:

• Every Attribute has its multiplicity set to “multi-valued” by default; when
an Attribute requires its multiplicity to be set to “single-valued”, this is
explicitly stated in the listings where WSMO elements are defined.

• Some WSMO elements define Attributes that take values from a union
of several types, a feature that is not directly supported by the MOF
metamodeling constructs; this can be simulated in MOF by defining a
new Class as a super-Class of all the types required in the definition of

5.3 The Language for Defining WSMO 61

the Attribute, representing the union of the individual types, with the
Constraint that each instance of this new Class is an instance of at least
one of the types which are used in the union; to define this new Class in
WSMO, we use curly brackets, and enumerate the Classes that describe
the types required for the definition of the attribute.

In the remainder of this Part we use listings constructed with the MOF
metamodel to illustrate the structure of WSMO where this will support the
understanding of the overall structure.

6

The Concepts of WSMO

In the case of complex systems, one cannot make sense of the constituent
parts without first understanding the whole. Parts can only make sense in the
context of a greater whole.

Our hope is that the previous chapter has provided the reader with some
sort of conceptual understanding of WSMO (although only a general overview
at best), at least enough to be able to understand the contention that WSMO
does not fall prey to the problems of the family of complex systems. Neverthe-
less, the present chapter will follow the “grandfatherly” advice of complexity
theory just the same, attempting to “make sense of the constituent parts”.

In this chapter, we describe further the core elements of WSMO: we present
ontologies in Section 6.1, Web services in Section 6.2, goals in Section 6.3, and
mediators in Section 6.4. Section 6.5 presents an informal discussion of the
nonfunctional properties that are part of the WSMO conceptual model.

6.1 Ontologies

Ontologies were introduced in Chapter 3 and although there are currently
several standardizations efforts for ontology languages [60, 32, 64], none of
them have the desired expressivity and computational properties that are
required to describe Web services at a sufficient level of granularity. In the
following, we shall define an epistemological model which is general enough to
intuitively capture existing languages. In the next chapter of this book we shall
present a concrete language specifically designed to express this metamodel.

Now we present the conceptual model and introduce the elements that
constitute an ontology using the MOF notation, defining the class “ontology”
with its attributes. The following listing specifies the building blocks for an
ontology. Note that all attributes are optional. Thus an ontology can have
multiple instances of all elements; however, this is not a requirement.

64 6 The Concepts of WSMO

Class ontology
hasNonFunctionalProperty type nonFunctionalProperty
importsOntology type ontology
usesMediator type ooMediator
hasConcept type concept
hasRelation type relation
hasFunction type function
hasInstance type instance
hasAxiom type axiom

6.1.1 Nonfunctional Properties

Nonfunctional properties are applicable to all the definitions of WSMO ele-
ments. Note that in some cases WSMO specifically recommends that certain
properties should be applicable to an element, but this does not impact the
general considerations presented here. Nonfunctional properties are mainly
used to describe nonfunctional aspects such as the creator and the creation
date, and to provide natural-language descriptions, etc. The elements defined
by the Dublin Core Metadata Initiative [134] are taken as a starting point.
Dublin Core is a set of attributes that define a standard for cross-domain
information resource description. In WSMO, we use URIs for identification of
elements, which are reused. WSMO proposes several extensions to this set by
introducing new attributes, such as the version element which can contain in-
formation about the particular version of an element. The set of nonfunctional
properties that WSMO recommends are informally presented in Section 6.5.

6.1.2 Imported ontologies

Building an ontology for a particular problem domain can be a rather cum-
bersome and complex task. One standard way to deal with the complexity is
modularization. Imported ontologies allow a modular approach to ontology
design and can be used as long as no conflicts need to be resolved between
the ontologies. When ontologies are imported, all statements of the imported
ontology will be virtually included in the importing ontology. Every WSMO
top-level entity may use this import facility to include the logical definition
of the vocabulary used.

6.1.3 Mediators

When ontologies are imported in realistic scenarios, some steps are needed
for aligning, merging and transforming the imported ontologies in order to
resolve ontology mismatches. For this reason and in line with the basic de-
sign principles underlying the WSMF, ontology mediators (OO mediators),
which are described in detail in Section 6.4, are used when an alignment of
an imported ontology is necessary. Such an alignment can be done by sim-
ply renaming concepts, attributes or the like. Just like the importsOntology
statement, the usesMediator statement is applicable to all top-level elements,
however depending on the element, different mediators may be used.

6.1 Ontologies 65

6.1.4 Concepts

Concepts constitute the basic elements of the agreed terminology for a problem
domain. From a high-level perspective, a concept - described by a concept
definition - provides attributes with names and types. Specified more formally
in MOF, a concept is made up of the following elements:
Class concept

hasNonFunctionalProperties type nonFunctionalProperties
hasSuperConcept type concept
hasAttribute type attribute
hasDefinition type logicalExpression multiplicity = single−valued

Furthermore, a concept can be a subconcept of several (or possibly none)
direct superconcepts, as specified by an “is-a” relation. In the WSMO model,
each concept can have a finite number of concepts that serve as a superconcept
for some other concept. Being a subconcept of some other concept means, in
particular, that a concept inherits the signature of this superconcept and the
corresponding constraints.

A concept provides a (possibly empty) set of attributes that represent
named slots for the data values of instances. An attribute specifies a slot of a
concept by fixing the name of the slot and a logical constraint on the possible
values filling that slot, which, in a simple case, can be another concept. Hence,
this logical expression can be interpreted as a typing constraint.

Additionally, a concept is defined by a logical expression. This means that
axioms can be asserted about a concept that refine its meaning, for example
with nuances that are not expressible by attributes or an “is-a” hierarchy. A
logical expression can be used to refine the semantics of the concept. More
precisely, the logical expression defines (or restricts) the extension (i.e. the set
of instances) of the concept. More details of the concrete language in which
this is done are given in Chapter 7.

6.1.5 Relations

Relations are used in order to model interdependencies between several con-
cepts (or instances of these concepts). The arity of relations is not limited.
Specified more formally in MOF, a relation is made up of the following ele-
ments:
Class relation

hasNonFunctionalProperties type nonFunctionalProperties
hasSuperRelation type relation
hasParameter type parameter
hasDefinition type logicalExpression multiplicity = single−valued

Every relation can have a finite set of relations, of which a defined relation
is declared as being a subrelation. Being a subrelation of some other relation
means, in particular, that a relation inherits the signature of this superrelation
and the corresponding constraints. Furthermore, the set of tuples belonging
to the relation (and the extension of the relation) is a subset of each of the

66 6 The Concepts of WSMO

extensions of the superrelations. In the example given earlier, we can define
airline distance as a subrelation of the general distance relation.

Similarly to attributes for concepts, each relation has a possibly empty
set of named parameters. If no named parameters are given, a unnamed,
ordered list is assumed. Each parameter is single-valued and can have a range
restriction in the form of a concept. As for concepts, a logical expression
defining the set of instances (n-ary tuples, if n is the arity of the relation) can
be specified.

6.1.6 Functions

A function is a special relation, with a unary range and an n-ary domain (the
parameters inherited from relations), where the range specifies the return
value. Functions can be used to represent and exploit built-in predicates of
common datatypes. Their semantics can be captured externally by means of
an oracle or the semantics can be formalized by assigning a logical expression
to a particular relation. The logical representation of functions is almost the
same as for relations. A typical example of the use of oracles is provided by
“built-ins”. These are functions such as “round” that are evaluated outside
the logical theory.

6.1.7 Instances

Instances are defined either explicitly or by a link to an instance store, i.e.
an external storage of instances and their values. Specified more formally in
MOF, an instance is made up of the following elements:
Class instance

hasNonFunctionalProperties type nonFunctionalProperties
hasType type concept
hasAttributeValues type attributeValue

Instances of relations (with arity n) can be seen as n-tuples of instances
of the concepts that are specified as the parameters of the relation.

In general, instances do not need to be specified using an explicit notation
of the kind used above. In particular, when a huge number of instances exist,
a link to a data store can be used [73]. Basically, the approach is to integrate
large sets of instances which already exist on storage devices by means of
sending queries to external storage devices or oracles.

6.1.8 Axioms

An axiom is a logical expression together with its nonfunctional properties. A
detailed discussion of axioms can be found in Chapter 7.

6.2 Web Services 67

6.2 Web Services

The Web service element of WSMO provides a conceptual model (a meta-
model in MOF terms) for describing, in an explicit and unified manner, all
aspects of a service, including its nonfunctional properties, its functionality,
and the interfaces needed to obtain it. An unambiguous model of services
with a well-defined semantics can be processed and interpreted by computers
without human intervention, enabling the automation of the tasks involved
in the usage of Web services, for example discovery, selection, composition,
mediation, execution, and monitoring.

As observed in [111], the word “service” can be understood in several
different ways, with slightly different meanings: as the provision of value in
some domain, as a software entity able to provide something of value, and as
a means of interacting online with a service provider.

WSMO provides a unified view of a service; the value that the service can
provide is captured by its capability, and the means to interact with the service
provider to request the actual performance of the service, or to negotiate
aspects of its provision, is captured by its interfaces. The software entity that
provides the service is transparent to us. We are concerned only with its style
of interaction and with what other services are used in order to provide the
value described in the capability.

Notice that in WSMO, the interaction with a service can be realized by us-
ing Web services in the WSDL sense. However, we are not restricted to WSDL
for the grounding of services. The elements identified in WSMO are equally
applicable to other underlying technologies, such as Triple Space computing
(Section 12.4). The directions that we have taken for the grounding to WSDL
are described in Section 9.5.

Fig. 6.1. WSMO Web service – general description

The main elements of a service description, depicted in Fig. 6.1, are a
capability, describing the value that the service can provide, and one or more
interfaces, in which the choreography and the orchestration of the service are
described. The choreography specifies how the service achieves its capability

68 6 The Concepts of WSMO

by means of interaction with the user – i.e. the communication with the user of
the service. The orchestration specifies how the service achieves its capability
by making use of other services – i.e. the coordination of other services.

More precisely, the WSMO Web service element is defined as follows:
Class service

hasNonFunctionalProperty type nonFunctionalProperty
importsOntology type ontology
usesMediator type {ooMediator, wwMediator}
hasCapability type capability multiplicity = single−valued
hasInterface type interface

• Nonfunctional properties. The nonfunctional properties of a Web service
are the aspects of the Web service that are not directly related to its
functionality. Besides the nonfunctional properties already presented, they
consist of Web-service-specific elements such as accuracy (the error rate
generated by the service), financial (the cost-related and charging-related
properties of a service [105]), network-related QoS (QoS mechanisms oper-
ating in the transport network that are independent of the service), owner
(the person or organization to which the service belongs), performance
(how fast a service request can be completed), reliability (the ability of a
service to perform its functions, i.e. to maintain its service quality), ro-
bustness (the ability of the service to function correctly in the presence
of incomplete or invalid inputs), scalability (the ability of the service to
process more requests in a certain time interval), security (the ability of a
service to provide authentication, authorization, confidentiality, traceabil-
ity/auditability, data encryption, and nonrepudiation), transactional (the
transactional properties of the service), trust (the trustworthiness of the
service), and version. The nonfunctional properties are to be mainly used
for the discovery and selection of services; however, they contain informa-
tion that is also suitable for negotiation.

• Imported ontologies. Imported ontologies are used to import the explicit,
formal vocabulary used in the specification of a Web service.

• Use of mediators. A Web service uses mediators in the following situations.
(1) When heterogeneous terminologies are used and conflicts between them
arise, a service can import ontologies using ontology mediators, as ex-
plained in Section 6.1.3. (2) When the service needs to cope with process
and protocol heterogeneity when interacting with other services. In this
case, a wwMediator is used. For a more detailed description of mediators,
see Section 6.4.

• Capability. The capability describes the real service provided for example
booking of train tickets. A more detailed description of capabilities is given
in Section 6.2.1.

• Interface. An interface describes the interface of the Web service to be used
to achieve the service described. Further details are given in Section 6.2.2.

6.2 Web Services 69

6.2.1 Capability

The functionality offered by a given service is described by its capability. This
is expressed by the state of the world before the service is executed and the
state of the world after successful service provision. The capability of a service
can be used for discovery and selection purposes, i.e. the capability is used by
the requester to determine whether the service meets its needs.

Specified more formally in MOF, a capability is made up of the following
elements:
Class capability

hasNonFunctionalProperty type nonFunctionalProperty
importsOntology type ontology
usesMediator type ooMediator
hasPrecondition type axiom
hasAssumption type axiom
hasPostcondition type axiom
hasEffect type axiom

The set of nonfunctional properties that can be attached to a capability is
presented in Section 6.5. The attributes of imported ontologies and mediators
play the same role for ontologies.

• Preconditions. Preconditions in the description of a capability specify the
required state of the information space before the execution of the service,
i.e. they specify what information a Web service expects in order to provide
the service. Preconditions constrain the set of states of the information
space such that any state satisfying these constraints can serve as a valid
starting state (in the information space) for executing the service in a
defined manner.

• Assumptions. Assumptions in the description of a capability describe the
state of the world which is assumed before the execution of the service.
Otherwise, the successful provision of the service is not guaranteed. As
opposed to preconditions, assumptions are not necessarily checked by the
service. We make this distinction in order to allow the explicit idea of
conditions on the state of the world that are outside the information space.

• Postconditions. Postconditions in the description of a capability describe
the state of the information space that is guaranteed to be reached after the
successful execution of the service; they also describe the relation between
the information that is provided to the service and its results.

• Effects. Effects in the description of a capability describe the state of the
world that is guaranteed to be reached after the the successful execution
of the service, i.e. if the preconditions and the assumptions of the service
are satisfied.

6.2.2 Interfaces

An interface describes how the functionality of a service can be achieved (i.e.
how the capability of a service can be fulfilled) by providing a twofold view

70 6 The Concepts of WSMO

of the operational competence of the service: (1) choreography decomposes
a capability in terms of interaction with the service, and (2) orchestration
decomposes a capability in terms of the functionality required from other
services.

This distinction reflects the difference between communication and coop-
eration. The choreography defines how to communicate with the service in
order to consume its functionality. The orchestration defines how the over-
all functionality is achieved by the cooperation of more elementary service
providers.

The Web service interface is meant primarily for the description of the
behavior of Web Services and is presented in a way that is suitable for software
agents to determine the behavior of the service and reason about it. It might
be also useful for discovery and selection purposes, and in this description, a
connection to existing Web service specifications, for example WSDL, could
also be specified.

The definition of an interface is given below:
Class interface

hasNonFunctionalProperty type nonFunctionalProperty
importsOntology type ontology
usesMediator type ooMediator
hasChoreography type choreography
hasOrchestration type orchestration

Choreography

The choreography interface describes the behavior of the service from the
client’s point of view; this definition is in accordance to the one given in
the W3C Glossary:1 Web service choreography concerns the interactions of
services with their users. Any user of a Web service, automated or otherwise,
is a client of that service. These users may, in turn, be other Web services,
applications, or human beings.

The state-based mechanism for describing WSMO choreography and or-
chestration interfaces is based on the abstract state machine (ASM) [58]
methodology. An ASM is used to abstractly describe the behavior of a service
with respect to an invocation instance of that service. We have chosen an
ASM model for the description of such interfaces since such a service invoca-
tion (e.g. the purchase of a book from Amazon.com) may consist of a number
of interaction steps. These interactions can be described by a stateful abstract
machine.

ASMs have been chosen as the underlying model for the following three
reasons:

• Minimality. ASMs provide a minimal set of modeling primitives, i.e. they
enforce minimal Ontological commitments. Therefore, they do not intro-

1 http://www.w3.org/2003/glossary.

6.2 Web Services 71

duce any ad hoc elements that would be questionable if they were to be
included into a standard proposal.

• Maximality. ASMs are expressive enough to model any aspect around com-
putation.

• Formality. ASMs provide a rigid framework to express dynamics.

In the following, we present a short overview of ASMs and then address
the core conceptual model for WSMO choreographies.

Basic Abstract State Machines

Abstract state machines, formerly known as evolving algebras [58], provide a
means to describe systems in a precise manner using a semantically well-
founded mathematical notation. The core principles are the definition of
ground models and the design of systems by refinements. Ground models
define the requirements and operations of the system, expressed in mathemat-
ical form. Refinements allow the expression of the classical divide-and-conquer
methodology for system design in a precise notation, which can be used for
abstraction, validation, and verification of the system at any given stage in
the development process.

Abstract state machines can be divided into two main categories, namely
basic ASMs and multiagent ASMs. The former express the behavior of a
system within a given environment. Multiagent ASMs express the behavior
of the system in terms of multiple entities that are collaborating to achieve
a functionality. For the description of the behavior of a single party, we are
interested only in basic ASMs.

A basic ASM is defined in terms of a state signature plus a finite set of
transition rules, which are executed in parallel. It may involve nondetermin-
istic behavior. Finite state machines can be viewed as a special case of such
basic ASMs. The state signature for a classical ASM usually consists simply
of a set of static and dynamic functions, which can be locally updated by
update rules. Dynamic functions can be classified into four other categories,
namely, controlled, monitored (or in), interaction (or shared), and out. Con-
trolled functions are directly updatable by the rules of a machine M only.
Thus, they can be neither read nor updated by the environment. Monitored
functions can only be updated by the environment and read by the machine
M , and hence constitute the externally controlled part of the state. Shared
functions can be read and updated by both the environment and the rules of
the machine M . Out functions can be updated and read by the environment,
but remain unreadable by M . Furthermore, ASMs define derived functions.
These are functions that are updatable by neither the machine nor the envi-
ronment but are instead defined in terms of other static and dynamic (and
derived) functions.

72 6 The Concepts of WSMO

WSMO Choreography Model

WSMO choreography deals with the interactions of the Web service from
the client’s perspective. We base the description of the behavior of a single
service exposed to its client on the basic ASM model. WSMO choreography
interface descriptions inherit the core principles of such ASMs, which can be
summarized as follows: (1) they are state-based, (2) they represent a state by
a signature, and (3) they model state changes by transition rules that change
the values of functions and relations defined by the signature of the algebra
(which, in our context, is a nonempty set of ontologies).

In order to define the signature we use a WSMO ontology, i.e. definitions
of concepts, their attributes, and relations and axioms over these. Instead of
dynamic changes of function values as represented by dynamic functions in
ASMs, we allow the dynamic modification of instances and attribute values in
the state ontology. Note that the choreography interface describes the interac-
tion with respect to a single instance of the choreography. The key extension
compared with the basic ASMs described above is that the machine signature
is defined in terms of a WSMO ontology (or possibly more than one), and the
logical language used for expressing conditions is WSML. This leads us to the
notion of evolving ontologies (derived from the notion of evolving algebras, the
name initially used for ASMs), since the choreography ASM in fact changes
the values of concepts and relations within ontologies.

Taking the ASM methodology as a starting point, a WSMO choreography
consists of three elements, which are defined as follows:
Class choreography

hasNonFunctionalProperties type nonFunctionalProperties
hasStateSignature type stateSignature
hasTransitionRules type transitionRules

The set of nonfunctional properties that can be attached to a capability is
presented in Section 6.5. The state signature defines the state ontology used
by the service, together with the definition of the types of modes that the
concepts and relations may have.

State Signature

The signature of the machine is defined by (1) importing an ontology which
defines the state signature over which the transition rules are executed, (2) an
optional set of OO mediators if the imported state ontologies are heterogenous,
(3) a set of statements defining the modes of the concepts and relations, and
(4) a set of update functions. The default mode for concepts of the imported
ontologies which are not listed explicitly in the mode statements is static.
Note it is not allowed to assign either “in” or “out” to concepts which have
explicitly defined any instance data in the imported ontologies by the state
signature. The definition of the state signature is expressed as follows:

6.2 Web Services 73

Class stateSignature
hasNonFunctionalProperties type nonFunctionalProperties
importsOntology type ontology
usesMediator type ooMediator
hasStatic type mode
hasIn type mode
hasOut type mode
hasShared type mode
hasControlled type mode

Class mode sub−Class {concept, relation}
hasGrounding type grounding

The state for a given signature of a WSMO choreography is defined by all
legal WSMO identifiers, concepts, relations, and axioms. The elements that
can change and are used to express different states of a choreography, are
instances of concepts and relations, which are used similarly to locations in
ASMs. These changes are expressed in terms of the creation of new instances
or changes of attribute values.

In a similar way to the classification of locations and functions in ASMs,
the concepts and relations of an ontology are marked to support a particular
role (or mode). These roles are of five different types: static, in, out, shared,
and controlled.

Since Web services deal with actual instance data, the classification is
inherited by instances of the correspondingly classified concepts and relations.
That is, instances of controlled concepts and relations can only be created and
modified by the choreography interface; instances of “in” concepts can only be
read by the choreography interface; instances of “out” concepts can only be
created by the choreography interface, and cannot be read or modified after
their creation. Instances of shared concepts and relations can be read and
written by both the choreography interface and, possibly, the environment;
they can also be modified after creation. In the future, we expect shared
concepts to be particularly important for grounding alternatives to WSDL
which do not rely on strict message passing, such as semantically enabled
Tuple Spaces [39].

Transition Rules

Unlike basic ASMs, the most basic forms of rules are not assignments, but
instead deal with basic operations on instance data, for example adding in-
stances to the signature ontology, removing instances, and updating instances.
To this end, we define atomic update functions to add, delete, and update in-
stances. This in turn allows us not only to add and remove instances to/from
concepts and relations, but also to add and remove attribute values for par-
ticular instances. In WSMO choreography, these basic updates are defined as
a set of fact modifiers, which are of four different types:

• add(fact);
• delete(fact);

74 6 The Concepts of WSMO

• update(factnew);
• update(factold → factnew).

More complex transition rules are defined recursively, analogously to classical
ASMs, by “if-then”, “forall” and “choose” rules:

if Condition then Rules endIf
forall Variables with Condition do Rules endForall
choose Variables with Condition do Rules endChoose

Orchestration

Orchestration describes how a service makes use of other services in order to
achieve its capability. In many real scenarios, a service is provided by using
and interacting with services provided by other applications or businesses.
For example, the booking of a trip might involve the use of another service
for validating a credit card and charging it with the correspondent amount,
and the user of the booking service may want to know which other business
organizations they are implicitly going to deal with.

WSMO introduces the orchestration element into the description of a ser-
vice to reflect such dependencies. WSMO orchestration allows the use of stat-
ically or dynamically selected services. In the former case, a concrete service
will be selected at design time. In the latter case, the service will only describe
the goal that has to be fulfilled in order to provide the service. This goal will
be used to select at runtime an available service that fulfills it, and the service
user could influence this choice.

It is envisioned that orchestration should make use of the multiagent asyn-
chronous ASM model to describe the interactions between Web services and
goals. These aspects are still to be investigated further, and will be defined in
future publications.

6.3 Goals

Goals are used in WSMO to describe a user’s desires. They provide the means
to specify the requester-side objectives when a Web service is consulted, de-
scribing at a high level a concrete task to be achieved.

Goals are representations of objectives for which fulfillment is sought
through the execution of Web services. They can be descriptions of services
that would potentially satisfy the user’s desires.

Note that WSMO completely decouples the objectives that a requester
has, i.e. his/her goal, from the services that can actually fulfill such a goal.
Specified more formally in MOF, a goal is made up of the following elements:

6.4 Mediators 75

Class goal
hasNonFunctionalProperty type nonFunctionalProperty
importsOntology type ontology
usesMediator type {ooMediator, ggMediator}
requestsCapability type capability multiplicity = single−valued
requestsInterface type interface

• Nonfunctional properties. Given the fact that a goal can represent a service
that would potentially satisfy the user’s desires, the set of nonfunctional
properties that can be attached to a goal is similar to that attached to
a Web services (see Section 6.2). An extra nonfunctional property can be
attached to a goal, namely type of match, which represents the type of
match desired for a particular goal (under the assumption of set-based
modeling, this can be an exact match, a match where the goal description
is a subset of the Web service description or a match where the Web Service
description is a subset of the goal description). For a detailed discussion,
see Section 9.2.

• Imported ontologies. A goal uses imported ontologies as a terminology to
define the other elements that are part of the goal, as long as no conflicts
need to be resolved.

• Nonfunctional properties. A goal uses mediators in the following situations.
(1) When heterogeneous terminologies are used, conflicts between them
may arise; in these cases, a service can import ontologies using ontology
mediators (OO mediators). (2) When a goal reuses already existing goals,
for example by refining them, GG mediators are used (these are explained
in more detail in Section 6.4).

• Requested Capability. The requested capability in the definition of a goal
describes the capability of the services that the user would like to have.

• Interface. The interface in the definition of a goal describes the interface
of the service that the user would like to have and interact with.

6.4 Mediators

Mediation is concerned with handling heterogeneity, i.e. resolving possible
mismatches between resources that ought to be interoperable. Heterogeneity
naturally arises in open and distributed environments, and thus in the applica-
tion areas of Semantic Web services, WSMO defines the concept of mediators
as a top-level concept.

Mediator-orientated architectures, as introduced in [135], specify a media-
tor as an entity for establishing interoperability of resources that are not com-
patible prior to resolving mismatches between them at run time. The approach
to mediation that is aspired to relies on declarative description of resources,
whereupon mechanisms for resolving mismatches work on a structural and
semantic level. This allows the defining of generic, domain-independent medi-
ation facilities and the reuse of mediators. Concerning the need for mediation
within Semantic Web services, WSMO identifies three levels of mediation:

76 6 The Concepts of WSMO

1. Data-level mediation: mediation between heterogeneous data sources
and transfer protocols; within ontology-based frameworks such as WSMO,
this is mainly concerned with ontology integration.

2. Functional-level mediation: mediation between heterogeneous func-
tionalities requested and provided; in WSMO, this relates to capability
descriptions of goals and Web services that are similar but do not match
precisely.

3. Process-level mediation: mediation between heterogeneous communi-
cation protocols and business processes; in WSMO, this relates mainly to
choreographies of Web services that ought to interact with the mismatch
handling on the business logic level of Web services (which is related to
the orchestration of Web Services).

WSMO mediators realize a mediation-orientated architecture for Semantic
Web services, thereby providing an infrastructure for handling heterogeneities
that may possibly arise between WSMO components and realizing the design
concepts of strong decoupling and strong mediation. We explain the WSMO
mediation architecture in further detail in Section 9.3.

6.4.1 Description of a Mediator

A WSMO mediator connects WSMO components and resolves mismatches
between them. The following gives the general definition:
Class mediator

hasNonFunctionalProperty type nonFunctionalProperty
importsOntology type ontology
hasSource type {ontology, goal , webService , mediator}
hasTarget type {ontology, goal , webService , mediator}
hasMediationService type {webService, goal , wwMediator}

• Nonfunctional properties. As a mediator can be provided as a service, the
same nonfunctional properties as for Web services are used (see Section 6.2
for what these nonfunctional properties consist of).

• Imported ontologies. Imported ontologies are used to import the explicit,
formal vocabulary used in the specification of a mediator; they play the
same role as in the case of ontologies or any other element defined by
WSMO.

• Source. The source component of a mediator defines the resources for which
heterogeneities are resolved; a mediator can have several source compo-
nents.

• Target. The target component of a mediator is the component that receives
the mediated source components.

• Mediation service. The mediation service defines the mediation facility
applied for resolving mismatches. This can be defined in various ways:
directly (i.e. explicitly linking to a mediation service); via a goal that

6.4 Mediators 77

specifies the desired mediation facility which is then detected by a discov-
ery mechanism; or via another mediator when a mediation service is to be
used that is not interoperable with the first mediator.

6.4.2 WSMO Mediator Types

In order to allow the resolving of heterogeneities between different WSMO
components, WSMO defines several different types of mediators for connect-
ing different WSMO components and overcoming the heterogeneities that can
arise between those components: OO mediators, GG mediators, WG media-
tors, and WW mediators. All mediators are subclasses of the general WSMO
mediator class defined above, where the prefix indicates the components con-
nected by the particular type of mediator. The following explains the various
WSMO mediator types.

OO Mediators

OO mediators resolve mismatches between ontologies and provide mediated
domain knowledge specifications to the target component. The source compo-
nents are ontologies or other OO mediators that are heterogeneous and able
to be integrated, and the target component is any WSMO top-level concept
that applies to the integrated ontologies. The following shows the description
specialization of an OO meditator:
Class ooMediator sub−Class mediator

hasSource type {ontology, ooMediator}

OO mediators are used to import the terminology required for a resource
description whenever there is a mismatch between the ontologies to be used.
The mediation technique used by OO mediators is mainly ontology integra-
tion, i.e. merging, aligning, and mapping ontology definitions in order to re-
trieve integrated, homogeneous terminology definitions.

GG Mediators

A GG mediator connects goals, allowing one to create a new goal from existing
goals and thus defining goal ontologies. GG mediators are defined as follows:
Class ggMediator sub−Class mediator

usesMediator type ooMediator
hasSource type {goal, ggMediator}
hasTarget type {goal, ggMediator}

A GG mediator might use an OO mediator to resolve terminology mis-
matches between the source goals. Mediation services for GG mediators reduce
or combine the descriptions of the source goals into the newly created target
goal.

78 6 The Concepts of WSMO

WG Mediators

A WG mediator links a Web service to a goal, resolves terminological mis-
matches, and states the functional difference (if any) between the two. WG
mediators are defined as follows:
Class wgMediator sub−Class mediator

usesMediator type ooMediator
hasSource type { service , wgMediator}
hasTarget type {goal, ggMediator}

WG mediators are used to prelink services to existing goals, and for the
handling of partial matches within Web service discovery. As with GG medi-
ators, WG mediators can be applied for resolving terminological mismatches.

WW Mediators

A WW mediator is used to establish interoperability between Web services
that are otherwise not interoperable. The definition in MOF is as follows:
Class wwMediator sub−Class mediator

usesMediator type ooMediator
hasSource type { service , wwMediator}
hasTarget type { service , wwMediator}

A WW mediator mediates between the choreographies of Web services
that ought to interact with one another, where mediation might be required
on the data, protocol, and process levels. As with the other WSMO mediator
types, OO mediators can be applied for resolving terminological mismatches.

6.5 Nonfunctional Properties

Nonfunctional properties are used in the definition of WSMO elements. Which
nonfunctional properties apply to which WSMO element is specified in the de-
scription of each WSMO element. In the following, we informally describe the
nonfunctional properties recommended to be attached to WSMO elements.

• Accuracy. This represents the error rate generated by a Web service. It can
be measured by the numbers of errors generated in a certain time interval.

• Contributor. An entity responsible for making contributions to the content
of the element. Examples of the property dc:contributor include a person,
an organization, and a Web service. The Dublin Core specification rec-
ommends that typically, the name of a dc:contributor should be used to
indicate the entity.2

2 In order to point unambiguously to a specific resource, we recommend the use of
an instance of foaf:Agent as the value type [21].

6.5 Nonfunctional Properties 79

• Coverage. The extent or scope of the content of the element. Typically,
dc:coverage will a include spatial location (a place name or geographic
coordinates), a temporal period (a period label, date, or date range), or a
jurisdiction (such as a named administrative entity).3

• Creator. The entity primarily responsible for creating the content of the
element. Examples of dc:creator include a person, an organization, and a
Web service. The Dublin Core specification recommends that, typically,
the name of a dc:creator should be used to indicate the entity.

• Date. The date of an event in the life cycle of the element. Typically,
dc:date will be associated with the creation or availability of the element.4

• Description. An account of the content of the element. Examples of
dc:description include, but are not limited to, an abstract, a table of
contents, a reference to a graphical representation of the content and a
free-text account of the content.

• Financial. This represents the cost-related and charging-related properties
of a Web service [105]. This property is a complex property, which includes
charging styles (e.g. per request or delivery, per unit of measure, granular-
ity, etc.), aspects of settlement such as the settlement model (transactional
vs. rental) and a settlement contract, payment obligations, and payment
instruments.

• Format. The physical or digital manifestation of the element. Typically,
dc:format may include the media type or dimensions of the element. The
format may be used to identify the software, hardware, or other equipment
needed to display or operate the element. Examples of dimensions include
size and duration.

• Identifier. An unambiguous reference to the element within a given con-
text. Recommended best practice is to identify the element by means of a
string or number conforming to a formal identification system. In Dublin
Core, formal identification systems include, but are not limited to, the
Uniform Resource Identifier (URI) (including the Uniform Resource Lo-
cator (URL)), the Digital Object Identifier (DOI), and the International
Standard Book Number (ISBN).

• Language. The language of the intellectual content of the element. The
language tags are defined in ISO Standard 639 [43], for example “en-GB”.
In addition, the logical language used to express the content should be
mentioned; for example this could be OWL.

3 For more complex applications, consideration should be given to using an en-
coding scheme that supports an appropriate specification of information, such as
DCMI Period, DCMI Box, or DCMI Point.

4 We recommend using an encoding defined in ISO Standard 8601:2000 [44] for date
and time notation. A short introduction to the standard can be found at http:

//www.cl.cam.ac.uk/~mgk25/iso-time.html. This standard is also used by the
XML Schema definition (YYYY-MM-DD) [16], and thus one is automatically
compliant with XML Schema too.

80 6 The Concepts of WSMO

• Network-related QoS. This represents the QoS mechanisms operating in
the transport network that are independent of the Web service. They can
be measured by network delay, delay variation, and/or message loss.

• Owner. A person or organization to which a particular WSMO element
belongs.

• Performance. This represents how fast a Web service request can be com-
pleted. According to [112], performance can be measured in terms of
throughput, latency, execution time, and transaction time. The response
time of a Web service can also be a measure of the performance. High-
quality Web services should provide higher throughput, lower latency,
lower execution time, faster transaction time and faster response time.

• Publisher. The entity responsible for making the element available. Exam-
ples of dc:publisher include a person, an organization, and a Web service.
The Dublin Core specification recommends that, typically, the name of a
dc:publisher should be used to indicate the entity.

• Relation. A reference to a related element. Recommended best practice is
to identify the referenced element by means of a string or number con-
forming to a formal identification system.

• Reliability. This represents the ability of a Web service to perform its
functions (that is, to maintain its Web service quality). It can be measured
by the number of failures of the Web Service in a certain time interval.

• Rights. Information about rights held in and over the element. Typically,
dc:rights will contain a rights management statement for the element, or
reference a Web service providing such information. Rights information
often encompasses intellectual property rights (IPR), copyright, and var-
ious property rights. If the rights element is absent, no assumptions may
be made about any rights held in or over the element.

• Robustness. This represents the ability of the Web service to function
correctly in the presence of incomplete or invalid inputs. It can be measured
by the number of incomplete or invalid inputs for which the Web service
still functions correctly.

• Scalability. This represents the ability of the Web service to process multi-
ple requests in a certain time interval. It can be measured by the number
of requests resolved in a certain time interval.

• Security. This represents the ability of a Web service to provide authentica-
tion (entities (users or other Web services) that can access a Web service,
and their data, should be authenticated), authorization (entities should
be authorized so that only they can access the protected Web services),
confidentiality (data should be treated properly so that only authorized
entities can access or modify the data), traceability/auditability (it should
be possible to trace the history of a Web service after a request has been
serviced), data encryption (data should be encrypted), and nonrepudiation
(an entity cannot deny requesting a Web service or data after the fact).

• Source. A reference to an element from which the present element is de-
rived. The present element may be derived from an element referenced in

6.6 Summary 81

dc:source in whole or in part. Recommended best practice is to identify
the referenced element by means of a string or number conforming to a
formal identification system.

• Subject. A topic of the content of the element. Typically, dc:subject will be
expressed as keywords, key phrases, or classification codes that describe a
topic of the element. Recommended best practice is to select a value from
a controlled vocabulary or a formal classification scheme.

• Title. The name given to an element. Typically, dc:title will be a name by
which the element is formally known.

• Transactional. This represents the transactional properties of the Web
service.

• Trust. This represents the trustworthiness of a Web service or an ontology.
• Type. The nature or genre of the content of the element. The dc:type

includes terms describing general categories, functions, genres, or aggre-
gation levels of content.

• Version. As many properties of an element might change over time, an
identifier of the element at a certain moment in time is needed.

6.6 Summary

In this chapter we have exhaustively introduced all elements relevant to the
WSMO framework. We have done this in a semiformal fashion using the UML-
based Meta-Object Facility. By separating the model from the language used
to implement it, this provides significantly more freedom then other competing
approaches (see Chapter 8).

Among the guiding principles we have presented Web compliance, which
will be very prominent in the next chapter, which introduces the concrete
language for WSML. Aspects of the Semantic Web are represented mainly
by introducing an epistemological model for ontologies and by using elements
of this model for refining other aspects such as capabilities through logical
expressions.

We have not yet made the relationship between the WSMO model and
Web service technology in the sense of WSDL explicit. The reason is that (1)
WSMO, used as a conceptual model to describe services, is independent of
the concrete technology used to implement them, and (2) this relationship
(grounding) is, in our context, only relevant to actual Web service execution
and not essential for an overall understanding. Information about grounding
can be found in Section 9.5.

7

WSML – a Language for WSMO

The Web Service Modeling Language (WSML) is a formal language for the
description of ontologies and Semantic Web services which takes into account
all aspects of Web service descriptions identified by WSMO. The language
comprises various formalisms in order to allow one to investigate their ap-
plicability to the description of Semantic Web services. Since our goal is to
investigate the applicability of various formalisms to the description of Se-
mantic Web services, it would be too restrictive to base our effort on existing
language recommendations such as OWL [32]. A concrete goal in our de-
velopment of WSML is to investigate the usage of various formalisms, most
notably description logics and logic programming, in the context of ontologies
and Web services.

We see three main areas which will benefit from the use of formal methods
in service descriptions: ontology description, declarative functional description
of goals and Web services, and description of dynamics. In its current version,
WSML defines a syntax and semantics for ontology descriptions. The underly-
ing formalisms mentioned above are used to give a formal meaning to ontology
descriptions in WSML. For the functional description of goals and Web ser-
vices, WSML offers a syntactical framework, with Hoare-style semantics in
mind. However, WSML does not yet formally specify the exact semantics of
the functional descriptions of services. The description of the dynamic behav-
ior of Web services (choreography and orchestration) in the context of WSML
is currently under investigation, but has not yet been integrated into WSML.
Thus, in this chapter we focus primarily on ontology description in WSML,
where we find that WSML already includes many potentially useful features
that were lacking in previous approaches.

We give an overview of WSML and its layering of languages in Section
7.1. The normative human-readable syntax of WSML is described in Sec-
tion 7.2, followed by a rough sketch of the WSML semantics in Section 7.3
and the WSML exchange syntaxes in Section 7.4. The key features of WSML
are described in Section 7.5. Section 7.6 describes related approaches to the

84 7 WSML – a Language for WSMO

description of Semantic Web services and ontologies. Section 7.7 contains a
summary of the Chapter and outlines future work which is planned for WSML.

The WSML specification and related documents can be found on line at
http://www.wsmo.org/wsml/wsml-syntax.

7.1 The WSML Layering

Figure 7.1a shows the different variants of WSML and the relationships be-
tween them. These variants differ in logical expressiveness and in the underly-
ing language paradigms and allow users to make a trade-off between provided
expressiveness and the implied complexity of ontology modeling on a per-
application basis. The variants are as follows:

��������	 �����
��	

���������������
��������	�������

����������

�
	�

��
��

���
��

��
��

��

�����������������

�������������������	��	������

������

��	�������
��

��������
���������	��	������

��������������������	������

(a) Language variants

�����
��	

��������	�������

����������

�����������������

�	����������������

�������

��������	

��������

(b) Layering

Fig. 7.1. WSML variants and layering

• WSML-Core is based on the intersection of the description logic SHIQ
and horn Logic, called DLP (description logic programs) [50]. It has the
least expressive power of all the WSML variants. The main features of the
language are concepts, attributes, binary relations, and instances, as well
as concept and relation hierarchies and support for datatypes.

• WSML-DL captures the description logic SHIQ(D), which is a major
part of the DL species of OWL [32].

• WSML-Flight is an extension of WSML-Core which provides a powerful
rule language. It adds features such as metamodeling, constraints, and
nonmonotonic negation. WSML-Flight is based on a logic programming
variant of F-Logic [72] and is semantically equivalent to datalog with in-
equality and (locally) stratified negation. WSML-Flight is a direct syntac-
tic extension of WSML-Core, and it is a semantic extension in the sense
that the WSML-Core subset of WSML-Flight agrees with WSML-Core on
ground entailments (see [70]).

7.2 General WSML Syntax 85

• WSML-Rule extends WSML-Flight with further features from logic pro-
gramming, namely the use of function symbols, unsafe rules and unstrat-
ified negation under the well-founded semantics [45].

• WSML-Full unifies WSML-DL and WSML-Rule under a First-Order um-
brella with extensions to support the nonmonotonic negation of WSML-
Rule. The semantics of WSML-Full is currently an open research issue.

As shown in Fig. 7.1b, WSML has two alternative layerings, namely,
WSML-Core ⇒ WSML-DL ⇒ WSML-Full and WSML-Core ⇒ WSML-Flight
⇒ WSML-Rule ⇒ WSML-Full. For both layerings, WSML-Core and WSML-
Full mark the least and most expressive layers, respectively. The two layerings
are to a certain extent disjoint, in the sense that interoperation in WSML be-
tween the description logic variant (WSML-DL) and the logic programming
variants (WSML-Flight and WSML-Rule) is only possible through a common
core (WSML-Core) or through a very expressive superset (WSML-Full).

7.2 General WSML Syntax

In this section, we introduce the general WSML syntax, which encompasses
all features supported by the different language variants. We describe the
restrictions imposed on this general syntax by the variants. These restrictions
follow from the logical language underlying the specific language variant, as
described in the previous section.

WSML makes a clear distinction between (a) the modeling of the various
conceptual elements and (b) the specification of complex logical definitions.
To this end, the WSML syntax is split into two parts: the conceptual syntax
and the logical-expression syntax. The conceptual syntax was developed from
the perspective of the user, and is independent of the particular underlying
logic; it shields the user from the peculiarities of the underlying logic. Hav-
ing such a conceptual syntax allows easy adoption of the language, since it
allows an intuitive understanding of the language for those not familiar with
logical languages. When the full power of the underlying logic is required,
the logical-expression syntax can be used. There are several entry points for
logical expressions in the conceptual syntax, namely axioms in ontologies and
capability descriptions in goals and Web services.

We shall first describe the use of Web identifiers and concrete data values
in Section 7.2.1. The various kinds of WSML definitions and a general explana-
tion of the conceptual syntax are given in Section 7.2.2. The logical-expression
syntax is described in Section 7.2.3.

7.2.1 Identifiers in WSML

WSML has three kinds of identifiers, namely IRIs, sQNames (abbreviated
IRIs), and data values.

86 7 WSML – a Language for WSMO

An IRI (Internationalized Resource Identifier)1 uniquely identifies a re-
source in a Web-compliant way. The proposed IRI standard is the successor
to the popular URI standard and has already been adopted in various W3C
recommendations. IRIs are delimited using an underscore and a double quote
“ ”” and a double quote “””, for example ”http://www.wsmo.org/wsml/wsml-

syntax#”.
In order to enhance legibility, an IRI can be abbreviated to an sQName,

which is short for “serialized QName”, and is of the following form: pre-
fix#localname. The prefix and the local part may be omitted, in which case
the name falls into the default namespace. Our concept of an “sQName” cor-
responds to the use of QNames in RDF and is slightly different from QNames
in XML, where a QName is not merely an abbreviation for an IRI, but a tuple
<namespaceURI, localname>.

Data values in WSML are either strings, integers, decimals, or structured
data values, reflecting the XML Schema datatypes. WSML defines constructs
which reflect the structure of data values. For example, the date “March 15th,
2005” is represented as date(2005,3,15). In logical expressions, constructed
data values can be used in the same way as constructed terms. However, logical
expressions do not allow constructed terms to be nested inside constructed
data values.

7.2.2 Conceptual Syntax

The WSML conceptual syntax allows the modeling of ontologies, Web services,
goals, and mediators. It is shared between all variants, with the exception of
some restrictions which apply to the modeling of ontologies in WSML-Core
and WSML-DL.

Ontologies

An ontology in WSML consists of the elements concept, relation, instance, re-

lationInstance, and axiom. Additionally, an ontology may have nonfunctional
properties and may import other ontologies. We start the description of
WSML ontologies with an example which demonstrates the elements of an
ontology in Listing 7.1, and then provide a detailed explanation.

Concepts
The notion of concepts (sometimes also called “classes”) plays a central role
in ontologies. Concepts form the basic terminology of the domain of discourse.
A concept may have instances and may have a number of attributes associ-
ated with it. The nonfunctional properties and the attribute definitions, are
grouped together in one frame, as can be seen from the example concept book

in Listing 7.1.

1 See IETF RFC 3987: http://www.ietf.org/rfc/rfc3987.txt

7.2 General WSML Syntax 87

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−flight”
namespace { ”http://example.org/bookOntology#”,

dc ”http://purl .org/dc/elements/1.1/”}
ontology ”http://example.org/bookOntology”

nonFunctionalProperties
dc#title hasValue ”Example Book Ontology”
dc#description hasValue ”Example ontology about books and shopping carts”

endNonFunctionalProperties
concept book

title ofType string
hasAuthor ofType author

concept author subConceptOf person
authorOf inverseOf(hasAuthor) ofType book

concept cart
nonFunctionalProperties

dc#description hasValue ”A shopping cart has exactly one id
and zero or more items, which are books.”

endNonFunctionalProperties
id ofType (1) string
items ofType book

instance crimeAndPunishment memberOf book
title hasValue ”Crime and Punishment”
hasAuthor hasValue dostoyevsky

relation authorship(impliesType author, impliesType document)
nonFunctionalProperties

dc#relation hasValue authorshipFromAuthor
endNonFunctionalProperties

axiom authorshipFromAuthor
definedBy

authorship(?x,?y) :− ?x[authorOf hasValue ?y] memberOf author.

Listing 7.1. An example WSML ontology

Attribute definitions can take two forms, namely constraining (using
ofType) and inferring (using impliesType) attribute definitions.2 Constraining
attribute definitions define a typing constraint on the values of an attribute,
similar to integrity constraints in databases; inferring attribute definitions im-
ply that the type of the values of the attribute is inferred from the attribute
definition, similar to the range restrictions on properties in RDFS [20] and
OWL [32]. Each attribute definition may have a number of features associ-
ated with it, namely, transitivity, symmetry, reflexivity, and the inverse of an
attribute, as well as minimal and maximal cardinality constraints.

Constraining attribute definitions, and also cardinality constraints, require
closed-world reasoning and are thus not allowed in WSML-Core and WSML-
DL. As opposed to the features of roles in description logics, features of at-
tributes such as transitivity, symmetry, reflexivity, and inverse attributes are
local to a concept in WSML. Thus, none of these features may be used in
WSML-Core and WSML-DL. For a description of the motivation for the use
of constraining attributes, see [31].

2 The distinction between inferring and constraining attribute definitions is ex-
plained in more detail in [31, Section 2].

88 7 WSML – a Language for WSMO

Relations
Relations in WSML can have an arbitrary arity, they may be organized in a
hierarchy using subRelationOf, and the parameters may be typed using param-
eter type definitions of the form (ofType type) and (impliesType type), where
type is a concept identifier. The use of ofType and impliesType corresponds
to their use in attribute definitions. Specifically, parameter definitions with
the keyword ofType are used to check the type of parameter values, whereas
parameter definitions with the keyword impliesType are used to infer concept
membership of parameter values.

The allowed arity of a relation may be constrained by the underlying logic
of the WSML language variant. WSML-Core and WSML-DL allow only bi-
nary relations and, similar to attribute definitions, they allow only parameter
typing using the keyword impliesType.

Instances
A concept may have a number of instances associated with it. The instances
explicitly specified in an ontology are those which are shared as part of the
ontology. However, most instance data exist outside the ontology in private
databases. WSML does not prescribe how to connect such a database to an
ontology, since different organizations will use the same ontology to query
different databases and such corporate databases are typically not shared.

An instance may be a member of zero or more concepts and may have a
number of attribute values associated with it; see, for example, the instance
crimeAndPunishment in Listing 7.1. Note that the specification of concept mem-
bership is optional and that the attributes used in the instance specification
do not necessarily have to occur in the associated concept definition. Con-
sequently, WSML instances can be used to represent semistructured data,
since without concept membership and constraints on the use of attributes,
instances form a directed labeled graph. Because of this possibility to capture
semistructured data, most RDF graphs can be represented as WSML instance
data, and vice versa.

Axioms
Axioms provide a means to add arbitrary logical expressions to an ontology.
Such logical expressions can be used to refine concept or relation definitions
in the ontology, and also to add arbitrary axiomatic domain knowledge or to
express constraints. The axiom authorshipFromAuthor in Listing 7.1 states that
the relation authorship exists between any author and any book of which he/she
is an author; consequently, 〈dostoyesksy, crimeAndPunishment〉 is in the relation
authorship. Logical expressions are explained in more detail in Section 7.2.3.

Web Services

A Web service has a capability and a number of interfaces. The capability
describes the functionality of the Web service by expressing conditions on

7.2 General WSML Syntax 89

webService ”http://example.org/bookService”
nonFunctionalProperties

dc#title hasValue ”Example Book Buying Service”
dc#description hasValue ”A simple example Web service for adding items to a shopping cart”

endNonFunctionalProperties

importsOntology ”http://example.org/bookOntology”
capability

sharedVariables {?cartId , ?item}
precondition

definedBy
?cartId memberOf string and ?item memberOf book.

postcondition
definedBy

forall ?cart (?cart [id hasValue ?cartId] memberOf cart implies
?cart [items hasValue ?item]) .

Listing 7.2. A WSML Web service description

its prestates and poststates3 using logical expressions; the interfaces describe
how to interact with the service. Additionally, WSML allows one to specify
nonfunctional properties of a Web service. Listing 7.2 describes a simple Web
service for adding items to a shopping cart.

Capabilities
Preconditions and assumptions describe the state before the execution of
a Web service. While preconditions describe conditions on the information
space, i.e. conditions on the input, assumptions describe conditions on the
current state of the world which, cannot necessarily be directly checked. Post-
conditions describe the relation between the input and the output, for example
a credit card limit with respect to its value before the execution of the service.
In this sense, postconditions describe the information state after execution of
the service. Effects describe changes in the real world caused by the service,
for example the physical shipment of goods. The sharedVariables construct is
used to identify variables which are shared between the preconditions and
postconditions and between the assumptions and effects. Shared variables can
be used to refer to the same input and output values in the conditions of
the capability. In the service described in Listing 7.2, given a shopping cart
identifier and a number of items, the items are added to the shopping cart
with this identifier.

Interfaces
Interfaces describe how to interact with a service from the requester’s point of
view (choreography) and how the service interacts with the other services and
goals that it needs to fulfill in order to fulfill its function from the provider’s
point of view (orchestration). Choreography and orchestration descriptions are

3 “Prestate” and “poststate” refer to the state before and after, respectively, the
execution of the Web service.

90 7 WSML – a Language for WSMO

external to WSML; WSML allows reference to any choreography or orches-
tration identified by an IRI.

Goals

Goals are symmetric to Web services in the sense that goals describe the de-
sired functionality and Web services describe the offered functionality. There-
fore, a goal description consists of the same modeling elements as does a
Web service description, namely nonfunctional properties, a capability, and a
number of interfaces.

Mediators

Mediators connect different goals, Web services, and ontologies, enabling inter-
operation by reconciling differences in representation formats, encoding styles,
business protocols, etc. Connections between mediators and other WSML el-
ements can be established in two different ways:

1. Each WSML element allows the specification of a number of mediators to
be used through the keyword usesMediator.

2. Each mediator has, depending on the type of mediator, zero, one, or more
sources and zero or one target. The source and target are optional, in
order to allow generic mediators.

A mediator achieves its mediation functionality either through a Web ser-
vice, which provides the mediation service, or a goal, which can be used to
dynamically discover the appropriate (mediation) Web service.

7.2.3 Logical-Expression Syntax

We shall first explain the general logical-expression syntax, which encompasses
all WSML variants, and then describe the restrictions on this general syntax
for each of the variants. The general-logical expression syntax for WSML has
a first-order logic style, in the sense that it has constants, function symbols,
variables, predicates and the usual logical connectives. Furthermore, WSML
has extensions based on F-Logic [72] in order to model concepts, attributes, at-
tribute definitions, and subconcept and concept membership relationships. Fi-
nally, WSML has a number of connectives to facilitate the logic programming
based variants, namely default negation (negation-as-failure), LP-implication
(which differs from classical implication), and database-style integrity con-
straints.

Variables in WSML start with a question mark, followed by an arbitrary
number of alphanumeric characters, for example ?x, ?name, or ?123. Free vari-
ables in WSML (i.e. variables which are not explicitly quantified), are implic-
itly universally quantified outside of the formula (i.e. the logical expression

7.2 General WSML Syntax 91

in which the variable occurs is the scope of quantification), unless indicated
otherwise, through the sharedVariables construct (see Section 7.2.2).

Terms are either identifiers, variables, or constructed terms. An atom is,
as usual, a predicate symbol with a number of terms as arguments. Besides
the usual atoms, WSML has special kinds of atoms, called molecules, which
are used to capture information about concepts, instances, attributes and
attribute values. There are two types of molecules, analogous to the situation
in F-Logic:

• An isa molecule is a concept membership molecule of the form A memberOf

B or a subconcept molecule of the form A subConceptOf B, where A and B

are arbitrary terms.
• An object molecule is an attribute value expression of the form

A[B hasValue C], a constraining-attribute signature expression of the form
A[B ofType C], or an inferring-attribute signature expression of the form
A[B ofType C], where A,B, and C are arbitrary terms.

WSML has the usual first-order connectives: the unary negation operator
neg, and the binary operators for conjunction and, disjunction or, right im-
plication implies, left implication impliedBy, and dual implication equivalent.
Variables may be universally quantified using forall or existentially quantified
using exists. First-order formulas are obtained by combining atoms using the
above connectives in the usual way. The following are examples of first-order
formulas in WSML:

//Every person has a father
forall ?x (?x memberOf Person implies exists ?y (?x[father hasValue ?y])) .
//John is member of a class which has some attribute called ’name’
exists ?x,?y (john memberOf ?x and ?x[name ofType ?y]).

In addition to first-order formulas, WSML allows the use of the negation-
as-failure symbol naf on atoms, the special logic programming implication
symbol :-, and the integrity constraint symbol !-. A Logic Programming rule
consists of a head and a body, separated by the symbol :-. An integrity con-
straint consists of the symbol !- followed by a rule body. Negation-as-failure
naf is allowed to occur only in the body of a logic programming rule or an
integrity constraint. The further use of logical connectives in Logic Program-
ming rules is restricted. The following logical connectives are allowed in the
head of a rule: and, implies, impliedBy, and equivalent. The following connec-
tives are allowed in the body of a rule (or constraint): and, or, and naf. The
following are examples of logic programming rules and database constraints:

//Every person has a father
?x[father hasValue f(?y)] :− ?x memberOf Person.
//Man and Woman are disjoint
!− ?x memberOf Man and ?x memberOf Woman.
//In case a person is not involved in a marriage, the person is a bachelor
?x memberOf Bachelor :− ?x memberOf Person and naf Marriage(?x,?y,?z).

92 7 WSML – a Language for WSMO

Particularities of the WSML Variants

Each of the WSML variants defines a number of restrictions on the logical-
expression syntax. For example, logic programming rules and constraints are
not allowed in WSML-Core and WSML-DL. Table 7.1 presents a number of
language features and indicates in which variant each feature can occur:

Table 7.1. WSML variants and feature matrix

Feature Core DL Flight Rule Full

Classical negation (neg) – X – – X
Existential quantification – X – – X
(Head) disjunction – X – – X
n–ary relations – – X X X
Metamodeling – – X X X
Default negation (naf) – – X X X
LP implication – – X X X
Integrity constraints – – X X X
Function symbols – – – X X
Unsafe rules – – – X X

• WSML-Core allows only first-order formulas which can be translated to
the description logic programming (DLP) subset of SHIQ(D) [50]. This
subset is very close to the 2-variable fragment of first-order logic, restricted
to Horn logic. Although WSML-Core might appear in Table 7.1 as fea-
tureless, it captures most of the conceptual model of WSML, but has only
limited expressiveness within the logical expressions.

• WSML-DL allows all first-order formulas which can be translated to
SHIQ(D). This subset is very close to the two-variable fragment of first-
order logic. Thus, WSML DL allows classical negation, and disjunction
and existential quantification in the heads of implications.

• WSML-Flight extends the set of formulas allowed in WSML-Core by al-
lowing variables in place of instance, concept, and attribute identifiers and
by allowing relations of arbitrary arity. In fact, any such formula is allowed
in the head of a WSML-Flight rule. The body of a WSML-Flight rule al-
lows conjunction, disjunction and default negation. The head and body
are separated by the LP implication symbol. WSML-Flight additionally
allows metamodeling (e.g. using a class identifier simultaneously as an in-
stance) and reasoning over a signature, because variables are allowed to
occur in place of concept and attribute names.

• WSML-Rule extends WSML-Flight by allowing function symbols and un-
safe rules, i.e. variables which occur in the head or in a negative body
literal do not need to occur in a positive body literal.

7.3 WSML Semantics 93

• WSML-Full. The logical syntax of WSML-Full is equivalent to the general
logical expression syntax of WSML and allows the full expressiveness of
all other WSML variants.

The separation between conceptual and logical modeling allows a gentle
learning curve for nonexperts, since the conceptual syntax does not require
expert knowledge in logical modeling, whereas complex logical expressions
require more familiarity and training with the language. Thus, WSML al-
lows the modeling of various aspects of Web services on a conceptual level,
while still offering the full expressive power of the logic underlying the chosen
WSML variant. Part of the conceptual syntax for ontologies has an equiva-
lence in the logical syntax. This correspondence is used to define the semantics
of the conceptual syntax. Note that since only parts of the conceptual syntax
are mapped to the logical syntax, only part of the conceptual syntax has a
semantics in the logical language for ontologies. For example, nonfunctional
properties are not translated (hence the name “nonfunctional”). The transla-
tion between the conceptual and the logical syntax is sketched in Table 7.2.

Table 7.2. Translating the conceptual to the logical syntax

Conceptual Logical

concept A subConcepOf B A subConceptOf B.

concept A
B ofType (0 1) C

A[B ofType C].
!− ?x memberOf A and

?x[B hasValue ?y, B hasValue ?z] and ?y != ?z.

concept A B ofType C A[B ofType C].

relation A/n subRelationOf B A(x1 ,...,xn) implies B(x1,...,xn)

instance A memberOf B
C hasValue D

A memberOf B.
A[C hasValue D].

7.3 WSML Semantics

The semantics of WSML ontologies is defined through a mapping between the
WSML logical syntax and the formalism which underlies the variant. WSML-
Core and WSML-DL logical expressions are mapped to first-order predicate
logic (FOPL). The restrictions on the WSML syntax for these variants ensure
that the expressions stay inside the expressiveness of the SHIQ description
logic. The semantics of WSML-Flight and WSML-Rule is defined through a
mapping to F-Logic programming [72, Appendix A].

In order to facilitate the mapping between a WSML variant and the un-
derlying logic, the WSML ontology is first transformed to a set of normalized
logical expressions, according to Table 7.2. Then, this normalized set of logical
expressions is mapped to the logic using a mapping function π. Finally, satis-
fiability and entailment are defined with respect to this transformed WSML
ontology.

94 7 WSML – a Language for WSMO

Rather than providing a direct semantics, the semantics of WSML is de-
fined through several mappings to well-known formalisms in order not only to
facilitate understanding of the language, but also so that complexity results
follow immediately from known definitions and the accepted literature. To
give an idea of the semantics,4 we show the example ontology booksOntology
(Listing 7.1), transformed into F-Logic programming:

← x[y⇒⇒z] ∧ w[y→→v] ∧ not v : z
book[title⇒⇒ string]
book[hasAuthor⇒⇒author]
author :: person
author[authorOf⇒⇒book]
y[hasAuthor→→x] ← x : author ∧ x[authorOf→→y]
y[authorOf→→x] ← y : author ∧ x[hasAuthor→→y]
cart[id⇒⇒ string]
book[hasAuthor⇒⇒author]
← x : cart ∧ not x[id→→y]
← x : cart ∧ x[id→→y] ∧ x[id→→z] ∧ y �= z
cart[items⇒⇒amazonBook]
crimeAndPunishment : book
crimeAndPunishment[title→→”CrimeandPunishment”]
crimeAndPunishment[hasAuthor→→dostoyevsky]
x : author ← authorShip(x, y)
y : document ← authorShip(x, y)
authorship(x, y) ← x[authorOf→→y] ∧ x : author

Note that in this example, a rule without a head is an integrity constraint.
A model of the rule base violates an integrity constraint if the body of the
constraint is true in the model. We call a transformed WSML-Flight ontology
O satisfiable iff the transformed rule base π(O) (without the constraints) has
a perfect model MO [72, Appendix A] and this model does not violate any of
the integrity constraints. Furthermore, a satisfiable WSML-Flight ontology O
entails a ground formula F iff π(F) is true in MO.

7.4 WSML Exchange Syntaxes

For exchange over the Web and interoperation with RDF-based applications,
WSML defines an XML syntax and an RDF syntax.

7.4.1 The WSML XML Syntax

The Extensible Markup Language (XML)5 is a markup language for inter-
change of structured and semistructured data over the Web. WSML specifies
a serialization in XML for exchange of WSML specifications over the Web.

The WSML XML syntax is similar to the human-readable syntax, both
in keywords and in structure. We have defined the XML syntax through
4 Space limitations prevent us from giving the complete semantics of WSML. In-

stead, we have given a rough sketch of the WSML semantics and refer the inter-
ested reader to [30].

5 http://www.w3.org/XML.

7.4 WSML Exchange Syntaxes 95

a translation from the human-readable syntax. Because of space limita-
tions, we give only a partial example (Listing 7.3) of the XML version of
the WSML example in Listing 7.1. The complete translation can be found
in [30]. Typically, WSML keywords, which are in the WSML namespace
(http://www.wsmo.org/wsml/wsml-syntax#), map to XML elements. Note also
that sQNames are written as full IRIs in XML. We have defined the WSML
XML syntax in the form of an XML Schema.6 The XML syntax for logical
expressions is close to RuleML, and we expect further alignment between the
two initiatives in the next version.

<!ENTITY book ”http://example.org/bookOntology#”>
<wsml xmlns=”http://www.wsmo.org/wsml/wsml−syntax#

variant=”http://www.wsmo.org/wsml/wsml−syntax/wsml−flight”>
<ontology name=”http://example.org/bookOntology”>

<nonFunctionalProperties>
<attributeValue name=”http://purl.org/dc/elements/1.1/title”>

<value type=”http://www.wsmo.org/wsml/wsml−syntax#string”>
Example Book Ontology

</value>
[..]

</attributeValue>
</nonFunctionalProperties>
<concept name=”&book;book”>

<nonFunctionalProperties>[..]</nonFunctionalProperties>
<attribute name=”&book;title” type=”constraining”>

<range>http://www.wsmo.org/wsml/wsml−syntax#string</range>
</attribute>

[..]
</concept>

[..]
</ontology>

</wsml>

Listing 7.3. WSML XML example

7.4.2 The WSML RDF Syntax

The Resource Description Framework (RDF)7 defines a data structure based
on triples for metadata description on the Web. RDF Schema [20] is a simple
ontology language intended to provide a vocabulary for RDF descriptions.

WSML provides a serialization in RDF of all its conceptual modeling
elements. The WSML RDF syntax reuses and extends the RDF Schema
vocabulary to allow existing RDF(S)-based tools to understand parts of a
WSML specification. For logical expressions, we reuse the XML serialization
of WSML, since an encoding of complex constructs does not fit well into the
RDF triple-based data model.

Owing to limited space, we show here only a small example of the WSML
RDF syntax, in Listing 7.4. The complete RDF serialization of WSML and
a larger example can be found in [30]. In Listing 7.4, “rdf” stands for the
6 http://www.wsmo.org/TR/d16/d16.1/v0.21/xml-syntax/wsml-xml-syntax.

xsd.
7 http://www.w3.org/RDF.

96 7 WSML – a Language for WSMO

RDF namespace http://www.w3.org/1999/02/22-rdf-syntax-ns#, “dc” stands for
the Dublin Core namespace http://purl.org/dc/elements/1.1/, “wsml” stands for
the WSML namespace http://www.wsmo.org/wsml/wsml-syntax#, and “book”
stands for the namespace http://example.org/bookOntology#. We use the sQ-
Name abbreviation mechanism, where prefix#localname is an abbreviation
for the concatenation of the namespace IRI and the local name. The RDF
triple is written as subject predicate object, and blank nodes are indicated by
“ :” in front of the name.

1 http://example.org/bookOntology rdf#type wsml#ontology

2 http://example.org/bookOntology wsml#variant http://www.wsmo.org/wsml/wsml−syntax/wsml−
flight

3 http://example.org/bookOntology wsml#nfp :nfp1

4 :nfp1 dc#title ”Example Book ontology”ˆˆxsd#string

5 http://example.org/bookOntology wsml#hasConcept book#book

6 http://example.org/bookOntology#Person wsml#hasAttribute :att1

7 :att1 wsml#attribute http://example.org/bookOntology#title

8 :att1 wsml#ofType xsd#string

9 http://example.org/bookOntology wsml#hasAxiom book#authorshipFromAuthor

10 book#authorshipFromAuthor rdfs#isDefinedBy ”<impliedByLP>..”ˆˆrdf#XMLLiteral

11 [..]

Listing 7.4. WSML RDF example

7.4.3 Mapping to OWL

We have defined a complete mapping from the ontology subset of WSML-
Core to OWL DL and a partial mapping from OWL DL to WSML-Core. The
mapping can be found in [30].

The ontology subsets of WSML-Core and WSML-DL can be completely
mapped to OWL DL, but OWL can be only partially mapped to WSML-DL,
since WSML-DL does not allow nominals (i.e. individuals in class descrip-
tions). The mapping between OWL and WSML-DL has not yet been defined.
However, it is a trivial extension of the mapping between WSML-Core and
OWL DL.

We give below a few notes about the mappings between OWL and WSML,
which should also clarify the relation between OWL and WSML:

• Since OWL is an ontology language and Web service modeling requires
additional modeling elements such as goal, mediator, and Web service
descriptions, the mapping between OWL and WSML can only be done for
the ontology-modeling part of WSML.

• The WSML-Core variant is based on a subset of the description lpogic
SHIQ(D), and thus the ontology subset of WSML-Core can be completely
mapped to OWL DL. WSML-DL can be completely mapped to OWL DL
(with datatype extensions), whereas the reverse mapping is not complete,
because WSML-Core does not allow nominals.

7.5 Key Features of WSML 97

7.5 Key Features of WSML

There are a number of features which make WSML unique in comparison
with other language proposals for the Semantic Web and Semantic Web ser-
vices. These key features are mainly due to the two pillars of WSML: (1)
a language-independent conceptual model for ontologies, Web services, goals,
and mediators, based on WSMO [116] and (2) the reuse of several well-known
logical-language paradigms in one syntactical framework. More specifically,
we see the following as the key features of WSML:

• One syntactic framework for a set of layered languages. We believe differ-
ent Semantic Web and Semantic Web service applications need languages
of different expressiveness and that no single language paradigm will be
sufficient for all cases. With WSML, we are investigating the use of de-
scription logics and logic programming for Semantic Web services.

• Normative, human-readable syntax. It has been argued that tools will hide
the syntax of the language from the user; however, as has been seen, for
example with the adoption of SQL, an expressive but understandable syn-
tax is crucial for successful adoption of a language. Developers and early
adopters of the language will have to deal with the concrete syntax. If it
is easy to read and understand then it will allow easier adoption of the
language.

• Separation of conceptual and logical modeling. On the one hand, the con-
ceptual syntax of WSML has been designed in such a way that it is in-
dependent of the underlying logical language, such that no or only lim-
ited knowledge of logical languages is required for the basic modeling of
ontologies, Web services, goals, and mediators. On the other hand, the
logical-expression syntax allows expert users to refine the definitions of
the conceptual syntax using the full expressive power of the underlying
logic.

• Semantics based on well-known formalisms. WSML captures well-known
logical formalisms such as datalog and description logics in a unifying
syntactical framework while maintaining the established computational
properties of the original formalisms through proper syntactic layering.
The variants of WSML allow the reuse of tools already developed for
these formalisms. Notably, WSML allows the reuse of efficient querying
engines developed for datalog and efficient subsumption reasoners devel-
oped in the area of description logics. Interoperation between paradigms
is achieved through a common subset, WSML-Core, based on description
logic programs [50].

• WWW language. WSML has a number of features which integrate it seam-
lessly with the Web. WSML adopts the IRI standard, the successor of
the URI, for the identification of resources, following the Web architec-
ture. Furthermore, WSML adopts the namespace mechanism of XML,
datatypes in WSML are compatible with datatypes in XML Schema [16],

98 7 WSML – a Language for WSMO

and datatype functions and operators are based on the functions and op-
erators of XQuery [86]. Finally, WSML defines an XML syntax and an
RDF syntax for exchange over the Web. When the RDF syntax is used,
WSML can be seen as an extension of RDFS.

• Frame-based syntax. Frame logic [72] allows the use of frames in logical
expressions. This allows the user to work directly at the level of concepts,
attributes, instances, and attribute values, instead of at the level of predi-
cates. Furthermore, variables are allowed in place of concept and attribute
identifiers, which enables metamodeling and reasoning over a signature in
the rule-based WSML language variants.

7.6 Relation to RDF(S) and OWL

In Section 7.4 we showed that parts of WSML can be expressed in RDF
and OWL, the most prominent language recommendations in the context of
the Semantic Web. Now let us take a closer look at the ontological modeling
capabilities that WSML offers in comparison with these two languages.

We recall that RDFS (see Section 3.2.1) allows the expression of classes,
properties, class hierarchies, property hierarchies, and domain and range re-
strictions, all of which are provided similarly by WSML. The following two
factors make the layering of more expressive ontology languages on top of
RDFS difficult:

1. RDFS allows the use of the language vocabulary as subjects and objects
in the language itself.

2. RDFS allows the use of the same identifier to occur at the same time in
place of class, individual, and property identifiers.

We believe that the number of cases where the first feature is used, namely
the use of language constructs in the language itself, is limited. However, the
use of the same identifier as class, individual, and property identifiers (also
called metamodeling) is deemed useful in many cases. WSML does not allow
the use of the language constructs in arbitrary places in an ontology, but does
allow metamodeling in its Flight, Rule and, Full variants.

WSML is an extension of a significant part of RDFS. However, it does not
allow the use of language constructs in the language itself and does not allow
full treatment of blank nodes because this would require reasoning with exis-
tential information (which is not allowed in the rule-based WSML variants).
WSML provides a significant extension of RDFS through the possibility of
specifying local attributes, range and cardinality constraints for attributes,
and attribute features such as symmetry, transitivity and reflexivity. Further-
more, WSML (in its rule-based variants) provides an expressive rule language
which can be used for the manipulation of RDF data.

As for OWL (see Section 3.3), we can easily verify that the logical ex-
pressions in WSML-Core form a semantic subset of OWL Lite. WSML-DL is

7.7 Summary 99

semantically equivalent to OWL DL. However, there is a major difference be-
tween ontology modeling in WSML and ontology modeling in OWL. WSML
uses an epistemology which abstracts from the underlying logical language,
whereas OWL directly uses description logic’s epistemology. Also, in con-
trast to OWL, WSML makes a separation between conceptual modeling for
the nonexpert user and logical modeling for the expert user. Arguably, these
properties could make WSML easier to use as an ontology language. This
is, however, merely a conjecture and would require extensive user testing to
verify its correctness.

Since WSML-Flight and WSML-Rule are based on the logic programming
paradigm rather than the description logic paradigm, their expressiveness is
quite different from that of OWL. Advantageously, WSML-Flight and Rule
allow chaining over predicates and nonmonotonic negation, but do not allow
classical negation, full disjunction or existential quantification. We conjecture
that both the description logics and logic programming paradigms are useful
on the Semantic Web (see [70]). With WSML, we capture both paradigms in
one coherent framework. And successful interaction between the paradigms is
achieved through a common subset, WSML-Core.

7.7 Summary

In this chapter, we have presented the Web Service Modeling Language,
WSML, a language for the specification of various aspects of Semantic Web
services, based on WSMO. WSML brings together different logical-language
paradigms and unifies them into one syntactical framework, enabling the reuse
of proven reasoning techniques and tools. Unlike other proposals for the Se-
mantic Web and Semantic Web service languages, WSML has a normative
human-readable syntax that makes a separation between conceptual and log-
ical syntax, thereby enabling conceptual modeling according to a language-
independent metamodel (WSMO), while not restricting the expressiveness of
the language for the expert user. With the use of IRIs (the successor of URIs)
and the use of XML and RDF, WSML is a language based on the principles of
the Semantic Web and allows seamless integration with other Semantic Web
languages and applications.

The definition of an interoperability layer between the description logic and
rules paradigms (i.e. WSML-Core) enables the use and extension of the same
core ontology for a number of different reasoning tasks supported by a number
of different reasoners, most notably subsumption reasoning using description
logic reasoners and query answering using logic programming reasoners.

8

Related Work in the Area of Semantic Web
Service Frameworks

WSMO is not the only initiative aimed towards Semantic Web services. Other
major initiatives in the area are documented by recent W3C member submis-
sions: OWL-S [87], SWSF [9], and WSDL-S [1]. In this chapter, we shall give
an overview of these related efforts, highlight their differences, and explain
their relation to WSMO.

8.1 OWL-S

OWL-S [87] is an OWL service ontology for describing various aspects of Web
services. The initiative has its roots in the DAML Service Ontology (DAML-
S), the first version of which was released in May 2001. At the time, it was the
first progressive effort towards semantic annotation of Web services. OWL-S
has currently reached version 1.1, which was submitted as a member submis-
sion to the W3C in November 2004 by Nokia, the University of Maryland,
the National Institute of Standards and Technology (NIST), Network Infer-
ence, SRI International, France Telecom, Stanford University, Toshiba, and
the University of Southampton.

By switching from DAML+OIL to OWL, OWL-S tried to adopt existing
Semantic Web recommendations yet still maintain bindings to the world of
Web services by linking OWL-S descriptions to existing WSDL descriptions.
We shall now take a closer look at the top-level concepts of the OWL-S on-
tology.

The ontology itself defines the top-level concept “Service” and three OWL-
S subontologies known as the “Service Profile”, “Service Model”, and “Service
Grounding”, all of which are illustrated in Fig. 8.1.

8.1.1 Service Profile

Each instance of the service class presents zero or more service profiles. A
service profile expresses “what a service does” for the purposes of advertis-

102 8 Related Work in the Area of Semantic Web Service Frameworks

ServiceProfile ServiceGrounding
ServiceModel

Resource Service

presents

describedBy

supports

provides

How it works...
What the service does... How to access it...

Fig. 8.1. OWL-S conceptual model

ing and serves as a template for service requests, thus enabling discovery and
matchmaking. The profile comprises nonfunctional aspects such as references
to existing categorization schemes (e.g. UNSPC) or ontologies, provider infor-
mation, and the quality rating of the service. The most essential information
presented in the profile, however, is the specification of what functionality
the service provides. Information transformation is represented by inputs and
outputs ; the change in the state of the real world caused by the execution
of the service is represented by preconditions and effects. Inputs and outputs
refer to OWL classes describing the types of instances to be sent to the service
and the respective responses to be expected. The format of the preconditions
and effects is not fixed, but the authors of OWL-S allow various formats to
be embedded into the OWL ontology. Preferably, SWRL [64]; alternatively,
DRS [88] or KIF [46] expressions may be allowed.

A possible problem in this context is that the semantics of these conditions
is not covered by the (description logics) expressivity of the OWL-S ontology
itself, but by reference to these languages. Parties, exchanging OWL-S profile
descriptions or using OWL-S for discovery, need to agree on the language for
expressing conditions and the notions of a “match” which is not addressed in
the standard as such.

8.1.2 Service Model

A service might be described by a service model which exposes “how a service
works”. The main use of a service model is to enable invocation, enactment,
composition, monitoring, and recovery. The service model views the interac-
tions of the service as a process. A process is not necessarily a program to
be executed, but rather a specification of ways in which a client may inter-
act with a service. OWL-S distinguishes between atomic processes, simple
processes, and composite processes. Atomic processes are simple operations,
whereas simple processes are views of complex or atomic processes. Composite
processes are built up from atomic or simple processes by standard workflow
constructs such as sequence, split, or join to determine the control flow, plus
additional dataflow information (which outputs are routed to which inputs

8.1 OWL-S 103

within the workflow). Results and outputs may depend on a condition, again
expressed in a third-party logical language (SWRL, KIF, or DRS).

Again, a possible problem, besides that of conditions, is that the semantics
of the workflow constructs is not expressible in the description logics under-
lying OWL, for which reason this semantics has been externally defined [98].

8.1.3 Service Grounding

In order to map to the Web service world, an OWL service can support a
grounding which maps the constructs of the process model to detailed speci-
fications of message formats, protocols, and so forth. In detail, OWL-S allows
one to map atomic processes to WSDL operations and their inputs and out-
puts to WSDL messages. These message mappings might have XSLT trans-
formations attached, in order to solve the problem of lifting/lowering from the
ontological representation in OWL to XML Schema in WSDL.1. Note that,
although WSDL is the only completely defined grounding for OWL, OWL-S
does not restrict itself to WSDL as the only underlying service technology.
Rather, OWL-S should be understood as a general service description ontol-
ogy, and is extensible to other grounding mechanisms.

8.1.4 Relationship Between OWL-S and WSMO

The most obvious difference between OWL-S and WSMO is probably that
the former is specified using the Web Ontology Language, whereas WSMO
uses an abstract MOF model (as introduced in Section 5.3). By reusing OWL
as a recommended standard, OWL-S gained considerable momentum. On the
other hand, OWL-S defines its meta model in the same language that it uses
for concrete service descriptions, which may be viewed as a disadvantage.
WSMO’s basis in the abstract MOF model successfully avoids this problem.

Moreover, OWL-S has the disadvantage of the need to “retrofit” more ex-
pressive languages into the OWL framework which then opens up new research
questions on how they should interact. WSMO aims to avoid this problem
upfront by providing a single language framework for expressing ontologies,
conditions, and also dynamic aspects of WSMO within a single language,
WSML.

When the language suggestions for WSML and OWL-S are compared, it
turns out that OWL-S aims at combining various notations and semantics with
OWL for the description of service conditions and effects, while WSML takes a
more cautious approach. WSML does not distinguish between languages used
for inputs/outputs and other description elements of the Web service, but
rather provides one uniform language for capability descriptions. Additionally,

1 For a more in-depth discussion of what is meant by lifting/lowering, we refer to
Section 9.5 later in this book, where this problem is discussed in the context of
WSMO.

104 8 Related Work in the Area of Semantic Web Service Frameworks

the languages suggested for OWL-S are all based on classical logic, whereas
WSML also offers the possibility to use nonmonotonic features from logic
programming.

We also see similarities in the conceptual models of OWL-S and WSMO. A
service profile in OWL-S is close to a capability of a service or goal in WSMO.
Nevertheless WSMO makes a conceptual distinction between the provider’s
and the requester’s view, which is not made in OWL-S.

The process model of OWL-S is conceptually similar to the WSMO ser-
vice and goal interfaces. However, the distinction between the description of
external behavior (choreography interface) and of the internal behavior (or-
chestration interface) is not made explicit in OWL-S.

WSMO mediators are not present in OWL-S. The authors of OWL-S claim,
for instance in [107], that mediators in OWL-S are simply to be viewed as
special kind of services, whereas we make the resolution of heterogeneities
on several levels (data, protocol, and process) a first-class citizen in WSMO.
As for the grounding, WSMO and OWL-S adopt similar ideas with respect
to binding to WSDL. However, the grounding is not a top-level concept in
WSMO, but is instead integrated into the WSMO interfaces. For a detailed
comparison, we refer the interested reader to [81]. Note that neither WSMO
nor OWL-S is restricted to WSDL alone as the only possible underlying tech-
nology, instead they are open for bindings to other grounding mechanisms to
be defined.

8.2 SWSF

The Semantic Web Services Framework (SWSF) [9] is a relatively recent at-
tempt towards a Semantic Web service annotation framework that greatly
profits from previous work with its roots in OWL-S and the Process Spec-
ification Language (PSL), standardized by ISO 18269. This framework is a
joint proposal by the Semantic Web Services Language Committee and was
also submitted to the W3C in September 2005. SWSF is based on two ma-
jor components: an ontology (or conceptual model) and a language used to
axiomatize it.

8.2.1 Conceptual Model

The Semantic Web Services Ontology (SWSO) has been influenced by OWL-S
and shares its three concepts of profile, model, and grounding, as described in
the previous section. Thus SWSO can be seen as an extension or refinement
of OWL-S. Although there are many similarities to the OWL-S ontologies,
one important difference is in the expressiveness of the underlying language,
which is, instead of OWL, a richer language called the Semantic Web Ser-
vice Language (SWSL). Another fundamental aspect is a richer behavioral

8.2 SWSF 105

process model based on PSL [54]. In the SWSF approach, there are two in-
dependent formalizations of the conceptual model, both expressed in variants
of the underlying SWSL.

In the following we briefly review the conceptual model as it is formalized
by the FLOWS (First-order Logic Ontology for Web Services) ontology , based
on the SWSL-FOL language variant. The second axiomatization, ROWS (Rule
Ontology for Web Services), shares the conceptual model but provides a dif-
ferent set of concrete semantics, which rely on the semantics of SWSL-Rules,
this semantics being closer to that of logic programming.

The process model is the part of the FLOWS ontology which offers con-
structs to describe the behavior of the service based on the PSL approach. In
order to do so, two fundamental elements are added: (1) the structured notion
of atomic processes as found in OWL-S, and (2) the infrastructure for specify-
ing various forms of data flow. By the use of PSL, each of the constructs used
inherits the semantics defined in PSL, which overcomes some initial problems
with the underdefined workflow semantics of the OWL-S process constructs.

The core part of this PSL extended by FLOWS is called PSL Outer Core,
and the resulting FLOWS subontology is called FLOWS-Core. The process
ontology is made up of six parts, which are divided according to their expres-
sivity such as ordering constraints and occurrence constraints.

8.2.2 Language

SWSL is a language for describing the concept of Web services and for de-
scribing individual services. As previously mentioned, SWSL comes in two
variants: SWSL-FOL and SWSL-Rules. The design of both languages was
driven by compliance with Web principles such as the use of URIs, integra-
tion with XML built-in types, and XML-compatible namespaces and import
mechanisms. Both languages are layered languages where every layer includes
a number of new concepts that enhance the modeling power of the language.
This means that they are richer and more expressive than OWL-S, which is
based on OWL DL. Being based on first-order logic, FLOWS makes use of
logic predicates and terms to model the state of the world.

Features from situation calculus (see for instance [113]), such as the use of
fluents (i.e., predicates, and terms which vary over time), have been introduced
to model changes in the world, in a way compatible with PSL. However, PSL
has a more elaborate ontology of time and the occurrences of activities than
has pure situation calculus. For details, we refer to [9, 54].

SWSL-Rules is a logic programming language, which includes features
from courteous-logic programs [51], HiLog [26] and F-Logic [72] and can be
seen as both a specification and an implementation language. SWSL-Rules
provides support for service-related tasks such as discovery, contacting, and
policy specification. The language is layered as illustrated in Fig. 8.2.

The core of the SWSL-Rules language is represented by its pure Horn
subset. This subset is extended by adding features such as disjunction in the

106 8 Related Work in the Area of Semantic Web Service Frameworks

Fig. 8.2. The layered structure of SWSL-Rules [9]

body and conjunction and implication in the head (Mon LT) [85], and negation
in the rule body interpreted as “negation as failure”. Other extensions are
based on courteous rules, HiLog, and Frames.

The second language, SWSL-FOL, is based on first-order logic and also
includes features from HiLog and F-Logic. It has a layered structure similar to
that of SWSL-Rules with various extensions. Some of the extensions provided
for SWSL-Rules apply to SWSL-FOL as well.

8.2.3 Relationship Between SWSF and WSMO

As for the conceptual model, SWSF shares many common features with OWL-
S, and thus similar considerations to those above apply for comparison with
WSMO.

A more interesting aspect concerns the language used. Many of the defi-
ciencies of OWL-S have been overcome in SWSF by

• not being bound to the restricted expressivity of description logics;
• providing rigid definitions of semantic aspects of conditions and dynamic

aspects of Semantic Web services by reuse of PSL;
• providing a single semantic language framework.

We remark that all of these points are also major design goals of WSMO and
WSML.

However, as opposed to WSMO, OWL-S, and WSDL-S, which will be dis-
cussed in the next section, we are unaware of any serious tools for Semantic
Web services, and ongoing implementation efforts based on SWSF so far. Since
such efforts also seem unlikely to be expected in the near future, SWSF is in
danger of remaining an interesting but mainly theoretical part of the devel-
opment of Semantic Web services. Further adoption of the concepts of SWSF
in the Web service community will probably also depend on the acceptance
of the PSL standard, with which SWSF provides a solid and very valuable
formal underpinning.

8.3 WSDL-S 107

8.3 WSDL-S

Compared with WSMO, OWL-S, and SWSF, WSDL-S [1] is a rather mini-
malist approach which aims at a direct extension of the existing “traditional”
Web service descriptions in WSDL with semantics (indicated by the last letter
of the acronym). Although the most recent W3C member submissions have
been mentioned in this chapter, the initiative has its roots in the METOR-S
project [110, 132], which has been going on for several years at the LSDIS
Laboratory2 , Athens, Georgia. WSDL-S was proposed in the form of a mem-
ber submission to the W3C in November 2005 by IBM and the University of
Georgia.

This approach proposes a lightweight mechanism to augment Web service
descriptions in WSDL with semantics. By adding annotation tags to the XML
schema of WSDL, the proposal picks those aspects similar to those in WSMO
capability definitions or OWL-S profiles which appear most relevant to the
authors of WSDL-S.

Using the extensibility of WSDL elements, a set of annotations can be
created to semantically describe the inputs, outputs and operations of a Web
service, as well as to specify a service category in an externally defined ontol-
ogy, as is schematically shown in Fig. 8.3.

Fig. 8.3. Schematic illustration of how WSDL-S provides links to domain models

This method keeps the semantic model outside WSDL, making the ap-
proach impartial in relation to any ontology representation language. The
authors of WSDL-S mention WSML, OWL, and UML as possible candidates.

The advantage of this approach is that it builds upon and stays close to
existing industry standards. The underlying design principles of WSDL-S can
be summarized as follows:

2 See http://lsdis.cs.uga.edu.

108 8 Related Work in the Area of Semantic Web Service Frameworks

1. WSDL-S aims to build upon existing Web service standards and promotes
an upwardly compatible mechanism for adding semantics to Web services.

2. Annotations should be impartial with respect to the representation lan-
guage for the semantic model. Consequently, WSDL-S does not prescribe
which semantic representation language should be used.

3. Support for XML Schema datatype annotations needs to be added to the
XML Schema, as this is the most important data definition format in the
realm of Web services.

The third item, i.e. closing the gap between WSDL message descriptions
(inputs/outputs) in terms of XML Schema and their semantic counterparts,
is precisely the problem addressed in WSMO (and OWL-S) in the grounding
component. However, WSDL-S differs fundamentally in being linked to WSDL
and not defining semantic annotations separately. Instead, WSDL-S links from
WSDL to the semantic description in terms of ontological concepts which are
defined externally.

In addition, attributes for referencing mappings between XML Schema
complex types and the corresponding ontological concepts are included in
WSDL-S. In its specification, WSDL-S exemplifies XSLT and XQuery as pos-
sible technologies to define such lifting/lowering from XML Schema to the
ontological level.

8.3.1 Language

WSDL-S does not fix a specific formalism for semantic descriptions. WSML,
OWL, and UML are mentioned as examples of formalisms that could be
adopted. Remarkably, unlike the other frameworks described so far, WSDL-
S fixes the underlying service technology (referred to as “grounding” in the
other formalisms) to WSDL by definition.

8.3.2 Relationship Between WSDL-S and WSMO

WSDL-S, with its minimalist approach can be viewed as orthogonal to
WSMO. It can even use to annotations in WSML for defining conditions,
etc. in its annotations or references to WSMO descriptions.

We have already mentioned that WSDL-S does not claim to be a fully-
fledged description framework/ontology, but rather simply adds some useful
attributes to WSDL’s XML tags in order to reference semantic annotations.
All the referenced concepts such as message types, operation preconditions,
effects, and service categories can likewise be annotated in WSML/WSMO.

Unlike WSMO, WSDL-S does not clearly establish how requests should
be defined. As we move towards a standard Semantic Web architecture, the
complete impartiality of WSDL-S with respect to the language used for defin-
ing semantic annotations might be criticized. Without a certain degree of
commitment to a specific language, or, at the very least, a definition of how

8.4 Summary 109

different semantics of usable languages relate to one another, it is impossible
to formally define requests, queries, or notions of a “match” between service
requests and service descriptions.

With respect to nonfunctional properties of services, WSDL-S points to
several existing proposals for standards from the Web service community. For
instance, the authors of WSDL-S remark that is is necessary to “[...] investi-
gate how to represent QoS assertions using ontologies and rules by extending
the WS-Policy framework” [1]. Likewise, as for behavioral descriptions or in-
terface descriptions, similar extensions of BPEL or WS-CDL are mentioned
as being possible. The concrete integration with such existing standards has
not yet been tackled, and remains open for future work. In terms of indus-
trial adoption of these standards, the WSDL-S team definitely has a point
here. In fact, the WSMO and WSMX working groups are investigating closer
alignment with industry standards, and the adoption of WSDL-S/METEOR-
S itself as a possible future grounding formalism for WSMO has even been
considered [131].

8.4 Summary

As we have learned in this chapter, apart from WSMO, several other ongoing
initiatives are progressing towards the development of frameworks for adding
semantic annotations to Web services.

We also learned that despite some fundamental conceptual differences,
there are several features common to these approaches. For instance, they all
seem to agree on a minimal subset of necessary aspects of semantic service
annotations:

1. General service classifications are common to all approaches.
2. A notion of preconditions and postconditions for successful service execu-

tion is common to all approaches, on the level of either atomic operations
or complex service interactions.

3. As for the behavioral/protocol descriptions of a service, WSMO, OWL-
S, and SWSF all allow one to encode complex behavior and interaction
patterns; in WSDL-S, this can probably be simulated to a limited extent
by adding preconditions and effects to individual WSDL operations, for
example by embedding WSDL-S into BPEL4WS [4]

4. Nonfunctional aspects (such as quality of service, cost, and availability)
can be modeled in most approaches. WSMO, OWL-S, and SWSF all pro-
vide extensible sets of nonfunctional properties in their ontologies, whereas
WSDL-S sees this as out of its scope and instead points to related WS-*
standards.

However, WSMO has some distinct features compared with the other
approaches mentioned. First, mediators are a unique top-level concept in
WSMO, whereas in OWL-S and SWSF the aspect of resolving heterogeneities

110 8 Related Work in the Area of Semantic Web Service Frameworks

is not treated separately, rather is is viewed as being dealt with by special
kinds of services. Second, WSMO is the only approach that makes a clear
distinction between the provider’s and the requester’s view by separating goal
and service annotations. The motivation here is to provide a clear view on the
following questions:

• How are requests/queries for particular service to be formulated?
• What are the related notions of a “match”?

Finally, we have also emphasized that for the latter question, a certain degree
of language commitment seems necessary, which is provided by the persistent
use of WSML within our framework.

Part III

Tools and Applications

9

Semantic Web Service Usage Tasks in WSMO

In this chapter, we exemplify some of the tasks that arise in the use of a
generic Semantic Web service framework. Given the complexity of the matter
and the state of the research, we shall not go into the deep details of realization
but rather aim to give the reader a general idea of how the semantics can be
usefully applied to several tasks. For the reader interested in concrete code
examples, we refer to the appropriate deliverables of the respective working
groups within the text.

We start this chapter by introducing a generic use case that is referred to
throughout the rest of the chapter. The list of tasks covered in this chapter
is not exhaustive but is intended to represent the most prominent areas in
current research.

9.1 The Virtual Travel Agency Scenario

The following depicts the Virtual Travel Agency (VTA) scenario which we
shall refer to to illustrate semantically enabled Web service technologies
throughout this chapter. This use case scenario is frequently applied for
demonstrating and illustrating the functionality of Web services (e.g. [61],[124]).

9.1.1 Overview of VTA Scenario

The Virtual Travel Agency is an e-tourism service provider which offers travel-
booking services to the end user by using and interacting with other, more
basic e-tourism service providers. The functionality of the VTA is that of a
traditional travel agency: getting a request from a customer, dealing with var-
ious e-tourism providers to put together an appropriate offer covering the cus-
tomer’s request, arranging all the bookings (and payments) with the providers,
and transparently offering the final trip arrangement to the customer.

In principle, the VTA is a Web service that offers information and booking
facilities for several aspects related to traveling, for example booking tickets

114 9 Semantic Web Service Usage Tasks in WSMO

for planes or trains, booking hotels, etc. The VTA Web service achieves its
functionality by aggregating Web services from other travel service providers.
Figure 9.1 provides an overview of this use case setting, and the following is
a list of the actors participating in this scenario:

• Customer : the end user who sends a trip-booking request to the VTA.
• Tourism service providers: commercial companies that provide specific

tourism services.
• VTA: the intermediary between the customer and the tourism service

providers. This provides tourism packages to customers by aggregating
the separate services of various tourism service providers.

Fig. 9.1. Overview of the use of the VTA

9.1.2 Semantic Web Service Usage Tasks

Let us consider the following exemplary setting. A customer wants to take a
trip to a given location (e.g., from Innsbruck to Vienna) for a given period
of time (e.g., staying there from August 10 to August 15). The customer
sends a request to the VTA, which then has to build a package including
travel to/from Vienna and accommodation for all the nights spent in Vienna.
Clearly, the hotel has to be booked according to the flight (i.e., if the flight
arrives on August 9, then the hotel has to be booked from August 9).

In this context, the VTA should take care of locating the necessary tourism
service providers (e.g., suitable flight providers for the trip and hotels in
Vienna) and contact them. Finally, a suitable offer will be returned to the
customer and, upon acknowledgment, either the accommodation, the trans-
portation, both, or none will be booked. This booking requires some sort of
weak transaction between the invoked services. We assume that the available
e-tourism providers will be dynamically located by the VTA, with no need
for prior agreements, and that the business process of the VTA will be dy-
namically composed on the basis of the request received and the available

9.2 Discovery 115

providers. Therefore, we assume that the VTA, the customers, and all other
Web service providers define WSMO descriptions of their respective resources.
The main steps that need to be carried out by the VTA in order to deal with
the request require the following techniques:

• Discovery. Out of potentially tens of thousands of Web services available
on the Internet, the VTA needs to determine which of them are usable
for a specific request. Here, a Web service for booking flight tickets from
Innsbruck to Vienna and a Web service for booking hotels in Vienna are
needed.

• Composition. The Web services utilized by the VTA need to be composed,
meaning that a suitable execution order of the flight-booking and the hotel
booking Web services needs to be determined. Here, the outputs of the
flight Web service may serve as inputs to the hotel Web service, as the
arrival date at the booked hotel needs to be the same as the arrival date
of the flight.

• Mediation. The resources needed to process the request may be heteroge-
neous, which hampers successful interaction. For example, the providers
of the hotel and flight Web services may use different ontologies in their
service descriptions so that information cannot be usefully interchanged,
or the Web services may require incompatible business processes for con-
suming their functionality. These mismatches need to be resolved in order
to allow proper interaction of the Web services, the VTA, and the client.

• Execution. After all the necessary Web services have been discovered, com-
posed, and mediated successfully, the VTA needs to execute them. In order
to do so, information interchange as specified in the interfaces of the Web
services should take place automatically.

The subsequent sections illustrate and describe semantically enabled tech-
niques that work on WSMO descriptions of Web services, goals, and media-
tors. It should be noted that the VTA is a placeholder or synonym for generic
Semantic Web service execution environments. As the technology matures,
the VTA will no longer be necessary, because the clients will be able to skip
the intermediary “middle man.” New technologies will allow clients to accom-
plish their goals without relying on the VTA for its mediation and aggregation
service technologies.

9.2 Discovery

WSMO provides a conceptual framework for semantically describing Web ser-
vices and their specific properties. In this section we discuss how WSMO can
be used for service discovery. We provide a proper conceptual grounding by
strictly distinguishing between service and Web service discovery and then
present various techniques for realizing Web service discovery. In order to
cover the complete range of scenarios that can occur in practical applications,

116 9 Semantic Web Service Usage Tasks in WSMO

several approaches to achieve the automation of Web service discovery are
presented and discussed. They vary in complexity and precision and require
different levels of semantics in the description of Web services and requests.

9.2.1 Discovery Framework

A workable approach to automating service discovery must define precisely
its conceptual model and the particular assumptions underlying the proposed
solution. To describe such an approach, we start by aiming to provide a com-
mon understanding of what a service is and the levels of abstraction in its
description, on the basis of [111], and we also state our assumptions about
the elements involved in the process of locating suitable services for service
requesters. First we recap parts of the discussion from Section 4.1 (on Web
service terminology). We use the following interpretation of the term service,
as described in the conceptual architecture for Semantic Web services pre-
sented in [111]: the provision of value in some domain. This definition regards
a service as a provision of value in some given domain, independent of how
the supplier and the provider interact. Usually, a service provider does not
provide only one particular service, but a set of coherent and logically related
services. For instance, a hotel usually does not provide only the possibility to
book a particular room on a particular date for a given number of nights, but
instead it will offer (and advertise) the general service of booking rooms at
that hotel. Following the terminology of [111], we call this collection of services
an abstract service offered by a provider. The smallest unit of advertisement
is considered to be an abstract service.

In order to deliver a service, a service provider usually needs certain in-
formation from the requester. For instance, a hotel might require the name of
the person booking the room, the requested features of the room, and a valid
credit card number, as input information in order to book a room. This input
data will determine what has to be provided, a concrete service.

Finally, Web services are computational entities using standardized in-
terfaces that allow clients to interact with a provider to access, explore and
consume concrete services. A service requester needs, technically, to interact
with a Web service to get what he/she is actually aiming at: a concrete service,
or, more generally, a set of concrete services that fulfill the requester’s goal,
i.e. an abstract service. Hence, we shall not distinguish between Web services
and abstract services of a provider but treat the two notions as synonymous.
Moreover, we can observe that a concrete service is delivered in the course of
or as a result of a particular execution of a Web service, by invocation with
specific data for the required input parameters.

Dynamics of Abstract Services Over Time

In the real world, we have a further complication in regard to discovery and
Web service description. In general, an abstract service offered by a provider

9.2 Discovery 117

does not stay the same, but changes over time. For example, a hotel will not
be able to book a room with a single bed on a specific date if all such rooms
in the hotel are already booked on that date.

Since clients are basically interested in finding abstract services which can
actually solve their problem at hand (as specified in a WSMO goal), discovery
in general needs to consider these dynamics in order to create accurate results.
This basically means that purely static descriptions of Web services are not
sufficient in the general case. In applications where highly accurate results are
requested, Web service descriptions will have to contain a dynamic component
as well.

On a description level, there are two main options to achieve a proper
representation of a dynamically changing abstract service from a provider:
(1) use a purely static description of the abstract service and change the
description in its entirety every time the abstract service changes; (2) use
a static description where some parts refer to a well-defined resource that
reflects currently valid information about the dynamic part (for instance, a
database table containing all available rooms at a hotel at a certain point in
time). Clearly, the first approach is not really scalable, since constant changes
of a stored abstract-service description are needed. The second approach is
a viable one, as we can see with the dynamically generated Web pages of
online stores such as Amazon.com that provide an up-to-date perspective of
the prices of individual books. In the latter case, we simply externalize the
details of the changing aspects of the abstract service and provide a reference
in the remaining part of the Web service description. Hence, the abstract-
service description, including the reference, does not need to change over time
when the abstract service of the provider changes, and hence the Web service
descriptions become more compact.

Nonetheless, the latter approach requires communication with the provider
of an abstract service (e.g. via a Web service that accesses a database table)
and thus can potentially be a costly step in terms of computation time. Hence,
there is a clear trade-off between the accuracy of discovery results and the
efficiency of the discovery process, which must be considered for any specific
application that leverages Web service discovery.

A Conceptual Model for Service Discovery

Approaches to automating discovery of suitable Web services must analyze
precisely what kinds of descriptions can be used for capturing the static and
dynamic aspects of a given Web service, and how such descriptions can be
exploited for efficiently and accurately locating a requested service. While
a number of proposals are available in our area of interest, (e.g. [11, 48, 84,
106, 126]), none of them has specifically addressed these aspects. Rather, they
have focused mainly on specific description languages and frameworks, partly
neglecting the overall needs. Therefore, we shall first define a model that
takes into account pragmatic considerations and defines borderlines between

118 9 Semantic Web Service Usage Tasks in WSMO

the various steps involved in the process of locating services, namely, goal
discovery, goal refinement, Web service discovery, and service discovery.

Below, we shall first briefly describe heuristic classification, summarizing
its relevance to service discovery. We shall then show how this model is applied
in WSMO as an underlying conceptual pattern in order to structure the service
discovery process.

Heuristic Classification

In [29], Clancey provided a landmark analysis in the area of expert systems.
On the basis of an analysis of numerous rule-based systems for classification
and diagnosis, he extracted a pattern of three inference steps that helped to
understand the various production rules implemented in the various systems.1

The problem-solving method that he called heuristic classification separates
abstraction, matching, and refinement as the three major activities in any
classification and diagnosis task (see Fig. 9.2).

Fig. 9.2. The three major processes of heuristic classification

Abstraction is the process of translating concrete descriptions of a case
into features that can be used for classifying the case. For example, the name
of a patient can be ignored when making a diagnosis, his/her precise age may
be translated into an age class, and his/her precise body temperature may be
translated into a finding “low fever.” The process is about extracting features
relevant to classification from a concrete description of a case.

Matching is the process of inferring potential explanations, diagnoses, or
classifications from the extracted features. It matches the abstracted case
description with abstract categories describing potential solutions.

Refinement is the process of inferring a final diagnosis, that explains the
given findings. This process may include the acquisition of new features that
describe the given case. However, it is now the potential solution that guides
the process of acquisition of these features.

1 In [104], heuristic classification has been used as a model for improving the trans-
lation process between different dialects of XML Schema.

9.2 Discovery 119

As the last step indicates, the entire process can be executed in an iterative
fashion. Instead of acquiring all potential findings, an initial set can be used
to derive an intermediate potential explanation that can then be used to guide
the next iteration of the process.

Service Discovery

The above is directly relevant because a scalable and workable approach to
service discover should follow the same pattern (see Fig. 9.3).

Fig. 9.3. The three major processes in service discovery

Users may describe their desires in a very personalized and specific way
that makes immediate mapping to service descriptions very complicated.
Therefore, each attempt at service discovery requires a process where user
expectations are mapped to more generic goal descriptions. Note that this
can be hidden by the fact that a discovery engine allows the user to select
only from predefined goals. However, then it is simply the user who has to
provide this mapping, meaning that the user must translate his/her specific
requirements and expectations into more generic goal descriptions. This step
can be called goal discovery, i.e. the user or the discovery engine has to find
a goal that describes (with varying levels of accuracy) his/her requirements
and desires. In the current literature on service and Web service discovery,
this step is mostly neglected.

An example of such a user’s desire (following the example of the VTA
presented in Section 9.1) would be to buy a train ticket from Innsbruck to
Vienna, to travel on December 12th 2004 with a departure time between 15:00
and 17:00. It can be seen that this is a very concrete and detailed desire, al-
though goals are typically intended to be generic and reusable. Therefore, a
mapping from the user’s desire to a generic goal becomes necessary. In fact,
Web services are means to find (and buy) services. They are to a large extent
service discovery engines, and a discovery engine should not try to replace or
duplicate this functionality.2 Web service discovery here is about searching

2 More precisely, Web services are an interface to a software artifact that may help
one to find and buy services (see [111]); however, we neglect this distinction here

120 9 Semantic Web Service Usage Tasks in WSMO

for Web services that can be used to buy tickets. And service discovery is
about checking whether the ticket sellers offering such Web services can really
provide the requested ticket. We do not think that complete, correct descrip-
tions of all the services offered by a Web service are a realistic expectation;
Web services would then be no longer necessary (at least not the discovery
process). We wonder whether logical reasoning would scale under these condi-
tions where the execution of an efficient program accessed via the Web service
would be simulated by reasoning over its semantic annotation.

Alternatively, one might assume to directly query the Web service during
the Web service discovery process. However, this may lead to network and
server overload, and it makes a very strong assumption: in addition to data,
protocol, and process mediation, the Web service must first be established be-
fore the discovery process can take place. In general, we do not think that this
is a realistic assumption; however, we defer a more detailed discussion to Sec-
tion 9.3. As a result, we think it is essential to distinguish between Web service
discovery and service discovery in order to come up with a workable approach
that scales and makes realistic assumptions in a pragmatic environment. In
summary:

• Web service discovery is based on matching abstracted goal descriptions
with semantic annotations of Web services. This discovery process can
happen only on an ontological level, i.e. it can rely only on conceptual
and reusable data. For this, to be possible, two processes are required:
(1) the concrete user input has to be generalized to more abstract goal
descriptions, and (2) the concrete services and their descriptions have to
be abstracted to the classes of services that a Web service can provide.
We believe that this twofold abstraction is essential for lifting Web service
discovery to an ontological level, which is a prerequisite for a scalable and
workable solution.

• Service discovery is based on the use of Web services for discovering actual
services. Web service technology provides automated interfaces to the in-
formation provided by software artifacts that is needed to find, select, and
eventually buy a real-world service or simply find a piece of information
that somebody is looking for. Service discovery requires strong mediation
and wrapping, since the specific needs of the choreography of a Web service
must be met in order to interoperate with it. Note that automation of ser-
vice discovery defines significantly higher requirements of mediation than
does that of Web service discovery, since protocol and process mediation
is also required.

and refer to the Web service interface and the accessed software artifact as one
entity.

9.2 Discovery 121

9.2.2 Web Service Discovery

We now discuss in more detail how Web service discovery is addressed within
the WSMO framework. We outline several different levels that require different
efforts for annotation and description of both goals and services and deliver
results of different accuracy. Each approach addresses a different level of ab-
straction in Web service descriptions. The various techniques taken together
help to create a workable solution to the problem of Web service discovery
which addresses practical requirements and is based on realistic assumptions.

Web Services at Various Levels of Abstraction

The descriptions of Web services, as published by service providers, and the
goals of service requesters need to be compared with one another during the
discovery process in order to identify matching Web services and goals. In
essence, matching in the discovery process is about finding common elements
in these descriptions. Depending at the level of detail which we consider these
entities, we end up with models of Web services at varying levels of abstraction:

At the most fine-grained level, we can consider services as concrete state
transitions (s, s′) from a state s to another state s′. The states s and s′ deter-
mine precisely how the world is before and after the service has been provided.
On a more abstract level, we can ignore the detailed structure of services (i.e.
the respective states), understand them purely as abstract objects, and char-
acterize their specific properties. In terms of ontologies, we would then con-
sider services as instances and Web services as concepts. At the most abstract
level, we can abstract even further in the description of abstract services by
ignoring the description of the possible elements of the set. At this level, we
would simply use a term or keyword for describing the abstract service and
neglect any information about the fine-grained structure. Essentially, we are
considering keyword-based descriptions here.

Each of these levels of abstraction implies a different description of Web
services, ranging from detailed characterizations of possible state transitions,
less detailed descriptions using (complex) concepts in an ontology, to sim-
ple unstructured keywords. Consequently, the achievable accuracy of a result
in the discovery process varies significantly, since more or less structure is
reflected in the descriptions. On the other hand, the ease of providing the
descriptions varies drastically between these levels as well. Whereas simple
keywords are easy to provide, the descriptions of concepts are not hard to
provide but this requires more effort. The provision of detailed state-based
descriptions definitely requires more skill from the people creating the formal
descriptions. The more fine-grained the information is, that the descriptions
reveal, the more complex the algorithms must be in order to deal with these
descriptions.

Therefore, there is an interesting trade-off between the possible achievable
accuracy, the ease of creating the descriptions, and the degree of computa-
tional efficiency of the discovery process.

122 9 Semantic Web Service Usage Tasks in WSMO

Keyword-Based Discovery

Keyword-based discovery is a basic ingredient in a complete framework for
Semantic Web service discovery. By performing a keyword-based search, the
huge amount of available services can be filtered or ranked rather quickly.

In a typical keyword-based scenario, a keyword-based query engine is used
to discover services. A query, which is basically a set of keywords, is provided
as input to a query engine. The query engine matches the keywords in the
user’s input against the keywords used to describe the service. A query with
the same meaning can be formulated by using a dictionary of synonyms, such
as WordNet [37]. The semantics of the query remains the same but, because of
the different keywords used (synonyms of previous ones), more services that
possibly fulfill the user’s request are found. Moreover, by using dictionaries
such as WordNet, as well as natural-language processing techniques, an in-
crease in the semantic relevance of the search results (with regard to the search
request) can in principle be achieved [115]. Nonetheless, such techniques are
inherently restricted by the ambiguities of natural language and the lack of
semantic understanding of natural-language descriptions by algorithmic sys-
tems.

The services descriptions at least consist of a dedicated set of keywords
for categorizing and indexing. Furthermore, they can include richer, semantic-
based elements.

Discovery Based on Simple Semantic Descriptions

Although keyword-based search is a widely used technique for information
retrieval, it does not use explicit, well-defined semantics. The keywords used
to retrieve relevant information do not have an explicit formalization and,
therefore, do not allow inferencing to improve the search results.

For these reasons, as a second approach, we consider the use of controlled
vocabularies with explicit, formal semantics. Ontologies provide excellent and
prominent conceptual means for this purpose. They provide an explicit and
shared terminology, and explicate interdependencies between concepts, and
thus are well suited to the description of Web services and goals. Moreover,
ontologies can be formalized in logics, which enables the use of inference ser-
vices for exploiting knowledge about the problem domain during discovery.

Web services at this intermediate level of abstraction, are understood as
sets of (unstructured) elements, i.e. as concepts from an ontological perspec-
tive. A capability of an Web service at this level of abstraction is a description
which does not depend on dynamic factors. A capability describes only what
an advertised Web service can potentially deliver and not under which circum-
stances (meaning preconditions) particular services can actually be provided.

9.2 Discovery 123

Discovery Based on Rich Semantic Descriptions

When they are a part of WSMO or another rich model description frameworks
such as OWL-S [87] or SWSF [9], functional descriptions of Web services are
syntactic expressions in some specification language using the precondition/-
postcondition style of description. This description specifies the possible state
transitions that are caused by service invocations. The logical formulas are
constructed from terms in an ontology, in a way in which the axiomatization
of these terms can be kept general (unspecific) and need not be repeated for
each service description.

Each description captures specific requirements for Web services and can
be used to constrain the set of all Web services to some subset that is relevant
to a particular context. At this level of abstraction, the descriptions describe
constraints on the valid prestates and resulting poststates. In contrast to the
previous level of abstraction, we are now able to describe relations between
such states; for example the balance of a bank account supplied as input may
be decreased by a certain amount.

9.2.3 Matching Goals and Web Services

The general approach is to look for certain types of logical relationships be-
tween the semantic capability descriptions of Web services and requests (i.e.
goals). If such a relationship holds, a Web service is considered to be usable
for resolving the client’s goal. On the basis of several preceding studies on
semantic matchmaking [84, 106], we have identified five matchmaking notions
for functional discovery as shown in Fig. 9.4. The important characteristic of
these notions is that each one denotes a different logical relationship that must
hold true when considering whether a Web service is suitable for achieving a
given goal. For instance, an Exact Match holds if and only if each possible
ontology instance that can satisfy the Web service also satisfies the goal, and
there exists no possible ontology instance that satisfies only the goal or the
Web service. In contrast, an Intersection Match holds if there exists one pos-
sible instance that can satisfy both the goal and the Web service. Hence, in
order to precisely express client objectives with respect to discovery, WSMO
goals carry an additional non functional property typeOfMatch, denoting the
matchmaking notion to be applied.

Several prototypical realizations of semantically enabled discovery already
exist: [84] and [49] apply description logic reasoners, the approach in [71] is
based on frame- and transaction logic, and [123] uses a FOL theorem prover as
the technical platform for semantically enabled discovery. However, all these
approaches are restricted to the specific reasoning support provided by the
tools used. Hence, it is expected that these approaches will converge towards
an integrated discovery framework for Semantic Web services that provides
appropriate reasoning facilities.

124 9 Semantic Web Service Usage Tasks in WSMO

Fig. 9.4. Matchmaking notions for semantically enabled discovery

We have presented a conceptual model for service discovery which avoids
unrealistic assumptions and is suitable for a wide range of applications. One of
the key features of this model is the explicit distinction between the notions
of Web services and services. We have outlined various approaches to the
discovery of Web services, with various requirements on the description of
Web services and the discovery goal itself. We have concluded by emphasizing
the advantages of our favored approach: semantic-based Web service discovery.

9.3 Mediation

Owing to its design principle of decentralization, the World Wide Web is
a network of decoupled, independently working computers. This makes the
Web heterogeneous by nature: people create Web sites and applications inde-
pendently, resulting in mismatches that hamper information interchange and
interoperability. In consequence, the Semantic Web will be heterogeneous as
well. The techniques for handling and resolving mismatches that hamper in-
teroperability of Web resources require mediation, a central pillar of the next
generation of Web technologies.

In the early 1990s, Wiederhold proposed so-called mediator-oriented ar-
chitectures for handling heterogeneities in IT systems [135]. In these architec-
tures, mediators are integrated components capable of dynamically handling
heterogeneities that hamper successful interoperation of system components.
For generic, application-independent mediation, the mechanisms for mismatch
resolution need to work on a structural level, based on declarative resource
descriptions. One of the merits of the Semantic Web is that resources carry
semantic descriptions, which allows mediation techniques to be defined on
a semantic level. Whereas OWL-S [87] defines an ontology for semantically
describing Web services yet remains orthogonal to mediation [107], WSMO
identifies mediation as a first-class citizen and, consequently, defines mediators
as a core element of Semantic Web services.

In order to attain a mediator-oriented architecture in accordance with
Wiederhold’s conception, the WSMO mediation model presented in [122] dis-
tinguishes two dimensions: (1) mediation techniques for resolving various kinds

9.3 Mediation 125

Fig. 9.5. Dimensions of mediation

of heterogeneities that can arise within the Semantic Web, and (2) logical com-
ponents that connect resources and apply the required mediation techniques.
These are embedded in a software architecture for dynamic invocation and
execution. Figure 9.5 shows the structure of the mediation model, which we
explicate below.

9.3.1 Mediation Levels and Techniques

The first dimension of the model is concerned with the types of heterogeneities
that can occur within the Semantic Web. The various heterogeneity types re-
quire specific techniques for mismatch resolution, which we refer to as levels
of mediation. The development of Semantic Web technology has revealed four
types of heterogeneity. We shall explain this categorization and describe me-
diation techniques for each level developed around WSMO, referring to other
material for more detailed explanation where necessary. The types of hetero-
geneity are as follows:

1. Terminology. Web services or other Web resources use different terminolo-
gies. For example one entity understands name to be the full name of a
person, and another one defines name to denote only the family name.
This can hamper successful interoperation on the semantic level.

2. Representation format and transfer protocol. Interacting resources use dif-
ferent formats or languages for information representation (e.g. HTML,
XML, RDF, or OWL), or different protocols for information transfer (e.g.
HTTP or RPC); incompatibilities on this level can obviously hamper use-
ful information interchange.

3. Functionality. This is specific to Web services, and refers to functionali-
ties of a provider and a requester that do not match exactly. This enforces
complex and thus expensive reasoning procedures for detecting Web ser-
vices that are usable for a given request. The need for such expensive
operations can be reduced by gaining and utilizing knowledge about the
functional heterogeneities, as explained in more detail below.

4. Business process. Also specific to Web services, this denotes mismatches
in the supported interaction behavior of Web services and clients. This

126 9 Semantic Web Service Usage Tasks in WSMO

can hamper successful interaction on a behavioral level for the purpose of
consumption or interaction of Web services.

Data-Level Mediation

The first mediation level addresses the first two types of heterogeneity identi-
fied above. As these are strongly interconnected and can be handled by similar
techniques, they are consolidated in data-level mediation [93]. This provides
a general mediation technique for Semantic Web applications.

The most common type of mismatch in the Semantic Web occurs owing
to usage of different terminologies by entities that need to interchange in-
formation. In ontology-based environments such as the Semantic Web, this
results from the use of heterogeneous ontologies as the terminological basis
for resource or information descriptions. A major advantage of ontologies is
that such mismatches can be handled on a semantic level by ontology integra-
tion techniques, explained below in more detail. Regarding the second type
of heterogeneity, of representation formats and transfer protocols, a suitable
method of handling is to lift the data from the syntactic to a semantic level
on the basis of ontologies, and then resolve the mismatches on this level [95].

Techniques for Data-Level Mediation

The central mediation techniques for the data level are semantically enabled
information integration techniques. Collectively referred to as ontology inte-
gration, the main techniques are ontology mapping, alignment, and merging,
which we briefly summarize in accordance with [102].

• Ontology mapping involves the creation of a set of rules and axioms that
precisely define how terms from one ontology relate to terms from another
ontology. These rules and axioms are expressed using a mapping language,
as in the example given below. Ontology mapping refers to mapping defi-
nitions only; none of the ontologies involved are changed.

• Ontology alignment has the role of bringing the ontologies involved into
mutual agreement. As in the ontology mapping technique, the ontologies
are kept separate but at least one of them has to be altered so that the
overlapping parts of the ontologies involved are “aligned” (i.e. they match).

• Ontology merging results in the creation of a new ontology that replaces
the original ontologies. The merging can be done either by unification
(all the terms from the ontologies involved are included, and mismatches
between the overlapping terms are resolved) or by intersection (only the
overlapping terms are included and their mismatches reconciled).

Example of Data-Level Mediation

In the context of the VTA, suppose that a client uses an ontology different
from that of the VTA Web service description. For illustrating the handling

9.3 Mediation 127

// Heterogeneous Ontology Concepts
ontology ”http://www.example.org/ontologies/TravelRequestOntology”

concept station
startLocation ofType boolean
destinationLocation ofType boolean
name ofType string

ontology ”http://www.example.org/ontologies/TravelOfferOntology”
concept route

from ofType (0 1) string
to ofType (0 1) string

// Mapping Definitions
Mapping(http://www.example.org/ontologies/TravelRequestOntology#station

http ://www.example.org/ontologies/TravelOfferOntology#route
classMapping(one−way station route))

Mapping(http://www.example.org/ontologies/TravelRequestOntology#destination Location
http ://www.example.org/ontologies/TravelOfferOntology#to
attributeMapping(one−way

[(station) destinationLocation => boolean] [(route) to => string]))
valueCondition(station [(station) destination Location => boolean] true)

Mapping(http://www.example.org/ontologies/TravelRequestOntology#start Location
http ://www.example.org/ontologies/TravelOfferOntology#from
attributeMapping(one−way

[(station) start Location => boolean] [(route) from => string]))
valueCondition(station [(station) startLocation => boolean] true)

Listing 9.1. Example of a definition of an ontology mapping

of terminology mismatches, consider that the ontology used by the requester
contains the concept station, and that the one used by the provider contains
the concept route. There are two terminological mismatches: (1) the attribute
startLocation of the concept station corresponds to the attribute from in
the concept route; (2) the attribute destinationLocation of the concept
station corresponds to the attribute to of the concept route. In order to
allow automated processing via ontology mapping, we need to create three
mapping rules: one for stating the relation between the two concepts and two
for imposing mappings between their attributes. Listing 9.1 shows this using
the abstract mapping language presented in [119], for higher flexibility and
easier maintenance of mappings. The constructs used here are mappings be-
tween concepts and mappings between attributes. Each mapping has a source
and a target indicated by IRIs, a direction (here, there is one way from the
source to the target), and possible conditions on the mapping (see [94] for
details on syntax and semantics of the mapping language).

Process-Level Mediation

The second mediation level is concerned with mismatches on the behavioral
level that can occur consumption of a Web service consumption or interaction
of several Web services. For instance, at some point during the consumption
of a Web service S by a requester R, R may expect an acknowledgement
while S waits for the next input; therefore, the interaction process between

128 9 Semantic Web Service Usage Tasks in WSMO

R and S runs into a deadlock situation. Within the WSMO framework, this
mediation level refers to the interaction behavior described in the interfaces
of Web services. These specify the interaction behavior supported or expected
by the Web service for consuming its functionality (choreography), and for
interacting with other Web services that are aggregated in order to achieve
the functionality of the service (orchestration).

Techniques for Process-Level Mediation

Mismatches at the process level can occur in every interaction that a Web
service is involved in. These heterogeneities can be resolved by inspecting
the individual business processes of the entities that interact, while trying
to establish a valid process for interaction on the basis of predefined media-
tion operations for the business processes. Reference [28] presents a prototype
that supports the following patterns for process-level mismatch resolution, as
illustrated in Fig. 9.6: (a) unexpected message stop, (b) order inversion, (c)
splitting, and (d) merging.

Fig. 9.6. Process mediation patterns

Example of Process-Level Mediation

The following exemplifies how these process mediation patterns can be applied
to resolve a communication mismatch in the VTA scenario. A requester R
wants first to send information about the travel date, followed by the start
location and end location of the trip. The provider P wants to receive first the
route, and then the data about the trip. R and P use ontologies containing
the concepts shown in Listing 9.1.

Figure 9.7 gives an overview of this situation. The interaction between the
requester and the provider is initialized by an outgoing message from R with
content of type date. But P expects an incoming message containing a route.
The process mediator inspects the interaction behavior of R and determines

9.3 Mediation 129

that the second and third outgoing messages contain instances of station
that can be mediated to route by the mappings defined above. Hence, the
process mediator applies the order inversion pattern in order to hold the first
message from R, and then – after data level mediation has taken place –
uses the merging pattern. The information can now be submitted to P in the
expected order and using the expected terminology.

Fig. 9.7. Example of process-level mediation

Functional-Level Mediation

Heterogeneities at the functional level arise when the functionality provided
by a Web service does not precisely match that one requested by a client. For
instance, in our VTA scenario, a requester may define a goal of purchasing
a ticket to travel from Innsbruck to Vienna without specifying the type of
ticket (i.e. for a bus, train, or plane). An available Web service offers train
tickets from Innsbruck to Vienna. Here, the Web service is only usable for the
request under the condition that the ticket is a train ticket.

We expect situations like this to be common when Web services are used.
In order to determine the usability of a Web service for a given request –
commonly referred to as functional discovery, a central reasoning task for
automated Web service usage – complex and thus expensive reasoning pro-
cedures are required [66]. As this hampers the efficiency of Semantic Web
technologies with regard to Web scalability, we use “∆-relations” to denote
functional heterogeneities and allow us to eliminate or reduce the need for
such expensive operations.

Techniques for Functional-Level Mediation

The central technique for functional-level mediation is the use of ∆-relations
that denote the explicit logical relationship between functional descriptions
of Web services and goals. Functional descriptions are a central pillar of com-
prehensive Web service description frameworks such as OWL-S and WSMO.
Defined by conditions on preconditions and effects in some ontology language,
they provide a black-box description of normal runs of a Web service, omitting
information about the technical details of the invocation of the service [67].

130 9 Semantic Web Service Usage Tasks in WSMO

The desired relationship can be described most adequately as the se-
mantic difference between functional descriptions. For two given functional
descriptions φ and ψ, the ∆-relation between them is defined as ∆φ,ψ =
(φ ∧¬ψ)∨ (¬φ∧ψ), i.e. ∆ contains those elements that are models for either
φ or ψ and not common to them. A ∆-relation defines a symmetric relation
between φ and ψ; when we concatenate ∆φ,ψ with either φ or ψ, we obtain
logical equality with the corresponding other formula.

Beneficial Usage Scenarios.

While the benefits obtainable from data- and process-level mediation are obvi-
ous, the benefits of functional-level mediation may be less obvious. Therefore,
let us consider the following situation in the VTA scenario: G1 defines a re-
quest to buy a ticket from Innsbruck to Vienna, WS1 provides a purchase
facility for train tickets in Austria, and WS2 provides a facility for booking
flight tickets in Austria and for international flights.

The ∆-relations between G1 and each of the Web services provides addi-
tional knowledge about the circumstances under which each Web service can
be used for resolving G1: using WS1 will result in the purchased ticket being a
train ticket; using WS2 will result in the purchased ticket being a flight ticket.
This additional information can for example be utilized for selecting the Web
service to be used. Imagine that the client who defines G1 has a preference for
traveling by plane because of tight business schedules. Here, we would choose
WS2 for use as the constraint of using WS1 contradicts the client’s preference.
Other beneficial mechanisms that work with ∆-relations are:

• Goal Adjustment. This is concerned with adjusting goal definitions that are
not resolvable a priori. Within our scenario, imagine that a client defines
a goal G3 of buying a flight ticket from Innsbruck to Vienna for less than
e 200. The flight booking Web service WS2 seems to be usable, but all
purchasable flight tickets cost significantly more than e 200. However,
train tickets for the desired itinerary are available for less than e 200 from
WS1. With respect to the ∆-relation between G3 and the Web services,
we can propose possibilities for adjusting the goal. Either weaken it by
omitting the price constraint so that WS2 becomes usable, or change the
desired ticket type to train ticket so that WS1 becomes usable. Note that
in any case the objective of the client as specified in G3 will be changed,
so that interaction with the client is required for confirmation.

• Goal Ontologies. Presumably, the most effective usage scenario with re-
spect to gainable efficiency increase would be to compute the ∆-relations
between already resolved goals and Web services, and then to utilize this
additional knowledge to avoid or reduce the need for complex reasoning
procedures for functional discovery. For instance, we can omit runs of dis-
covery engines for determining usable Web services for the above-defined
goal G2 if we already know WS1 and WS2 to be usable for G1, as we obtain
from the ∆-relation between G1 and G2 the fact that they are structurally

9.3 Mediation 131

the same – apart from different concrete literals – so that the same Web
services must be usable for resolving both goals. This allows the definition
of beneficial algorithmic procedures for avoiding or reducing the need for
expensive reasoning operations in functional Web service discovery. We
refer to [121] for details of this technique.

9.3.2 Mediation Components

The second dimension of the WSMO mediation technology relates to the
logical components that utilize the mediation techniques presented above in
order to resolve mismatches. As a consequence of the dynamic and evolving
nature of the Semantic Web, an essential design principle for a comprehensive
mediation architecture is modularity, i.e. delegation of mediation to distinct
components in order to enable reusability of mediation facilities [41].

The WSMO metamodel defines four types of mediators that appear to
be applicable within the Web service usage process. The mediator type is
indicated by a prefix denoting the types of the source and target components.
Each mediator type applies those mediation techniques which are required for
resolving the heterogeneities that can possibly occur between the connected
components. Figure 9.8 gives an overview of the WSMO mediator typology
with respect to the mediation techniques used.

Fig. 9.8. WSMO mediator topology

OO mediators provide the data-level mediation component. The source
elements are ontologies or other OO mediators, while the target can be any
top-level WSMO element. The only mediation technique used is data-level me-
diation. OO mediators provide a general mediation component for ontology-
based applications; the other mediator types are specific to Web services.

GG mediators connect WSMO goals, i.e. both the source and the target are
goals. The mediation techniques used are data mediation via OO mediators
and functional level mediation on the basis of ∆-relations that precisely define
the logical relationship between the source and target goals.

132 9 Semantic Web Service Usage Tasks in WSMO

WG mediators connect Web services and goals when a Web service is not
usable for solving a goal a priori. The mediation techniques used are data-
level mediation via OO mediators, functional-level mediation to establish the
usability of a Web service for resolving a goal if not given a priori, and process-
level mediation for resolving potential mismatches on the communication level
between the source and target components.

WW mediators connect Web services that interact but are not compatible
a priori. Their source and target components are Web services. The related
mediation techniques are data-level via use of OO mediators, functional-level
mediation for handling functional heterogeneities, and process-level mediation
for resolving mismatches between the source and target service with respect
to communication and to coordination of interaction. Most commonly, the
source component of a WW mediator is a Web service W that aggregates
other Web services W1, . . . , Wj , . . . , Wn in its orchestration, and the target
component is one of the aggregated Web services Wj .

In conclusion, the WSMO mediation model realizes Wiederhold’s concep-
tion and can be considered sufficient for the Semantic Web. It defines architec-
tural components that apply mediation facilities that are appropriate for the
types of heterogeneity that can appear between the core elements of Semantic
Web service systems. The main merit of this model is that each mediator is
minimal (i.e., it covers only a minimal aspect of heterogeneity handling), and
modular (i.e., several mediators are combined for the purpose of specific appli-
cations). This enables reuse of mediation facilities and eases their maintenance
within dynamic and evolving environments such as the Internet.

9.4 Composition

Composition in the context of Semantic Web services refers to the automated,
online combination of existing services to meet some user goal or to the manual
or (semi-) automated, offline design of some composite service from existing
parts. In each case it is necessary to have some semantic description of the
composite service and how it is composed; this description is referred to as an
orchestration. An orchestration must necessarily define three aspects: (1) the
participants in the composition; (2) the control-flow governing the order and
choice between execution of these participants (3) the data-flow governing
what is communicated between these participants.

9.4.1 Participants

It is usual within Semantic Web services that a composite service, on exe-
cution, will involve the execution of a number of participant services from
different providers. Furthermore, in the context of goal-driven execution de-
scribed in this section, it is possible that participants may be described as goals
rather than as concrete, grounded services. Therefore, even in the context of

9.4 Composition 133

offline composition, it is possible that the exact combination of services that
lead to the overall behavior may be left open to discovery during execution.
In WSMO terms, then, a basic orchestration may describe the composition of
goals, services or some combination thereof.

For example in the DIP project3 we propose a three-level WSMO compati-
ble approach to orchestration [14]. Orchestrations may be represented either in
abstract state machines (ASMs) [58], in the Cashew workflow language [101],
or in UML activity diagrams [52]. The activity diagram language concentrates
on orchestration as composition of services, since it is intended to support an
offline composition process which involves discovery, based on UML activity
diagrams. The Cashew language concentrates on the hierarchical composition
of goals via Workflow Patterns [130]. Abstract state machines in general and
in particular the WSMO choreography language are intended to be a neutral,
formal representations for orchestrations. They can compose behavior from
services and goals; and both activity diagrams and Cashew workflows can be
translated into the WSMO language.

In the SUPER project4, higher level representations for behavior are con-
sidered from the perspective of business processes. In particular, a semantic
BPEL language is being constructed, preserving the features of BPEL [4]
but being compatible with WSMO and taking advantage of its features, such
as goal-driven execution. In BPEL, behavior from a number of partners is
composed, with each partner able to play several roles within a workflow, de-
scribed as WSDL port types. In order to construct a semantic equivalent, the
participants in semantic BPEL processes are partners that may have several
behaviors described as WSMO goals. A service discovered to fulfil the role of
a partner must support all of these goals and thus the notion of participant
when viewing such a process as defining an orchestration is extended.

9.4.2 Control Flow

In order to allow control-flow to be represented in a state-based manner, and
to allow data-flow to be represented in a semantic manner, WSMO uses the
notion of a “state signature” for orchestration. A state signature is a set of
ontological concepts and relations over which state is expressed - the state at
any point in the execution is understood as the set of instances of all of these
concepts and relations.

Abstract state machines are defined over a state signature by allowing tests
over the current instances as transition guards, and updates as transition
effects. Those updates are specified as logical expressions and can be adds,
updates and deletes of instances of concepts and relations. Control flow must
therefore be represented as tests over a state. To help to make the control flow
more explicit, two particular forms of ASMs are proposed: control state ASMs,

3 http://dip.semanticweb.org.
4 http://www.ip-super.org.

134 9 Semantic Web Service Usage Tasks in WSMO

where a variable is used to represent an explicit global state; and multi-agent
ASMs, where state is tracked separately for several explicit agents.

Workflow Patterns [130] survey the different types of control flow idiom
present in workflow systems and provide a common language. ASMs have a
clear semantics, however it has not yet been shown how to represent a suitable
subset of these patterns in an explicit or compositional way, therefore higher
level languages such as Cashew take the approach of explicitly representing
workflows in terms of decomposition via control flow patterns and implicitly
defining an ASM. The ASM defined can be thought of as a control state ASM
where a process algebraic term defines the values taken by the control state,
via an extension of the semantics in [100].

One drawback of the use of ASMs as only representation is the lack of a
graphical representation. In the DIP project this is addressed via a language
for specification of orchestrations in UML activity diagrams. Again, an ASM
can be seen as implicitly defined with multiple control states, in a similar way
to multi-agent ASMs, representing the “places” in a token-flow semantics for
Activity Diagrams.

The semantic version of BPEL designed in the SUPER project will pre-
serve the two forms of control flow present in BPEL. A graph-like network
of control flow dependencies, in the style of WSFL [83] will be directly rep-
resented, as will an “algebraic” decompositional form similar to Cashew but
with more of BPEL’s business-oriented extensions such as compensable trans-
actions. A WSMO-oriented operational semantics for this language has not
yet been defined.

9.4.3 Data Flow

Data flow in WSMO relies on the assignment of modes to the concepts and
relations in the state signature, in particular the modes in, out, shared and
controlled. Concepts and relations of in, out and shared modes represent com-
munications outside the orchestration and are given groundings to define these
physical communications.

An in-mode concept (or relation - we leave this choice implicit in the
following) will be populated when a communication is received during the
execution of the orchestration. Conversely, if the orchestration populates an
out-mode concept, a communication will be effected. Shared-mode concepts
allow such communication to be carried out via a Triple Space, where the
orchestration may read or write to some concept represented externally in
such a space.

An orchestration may define communications with its participants via pop-
ulation of, and testing on, the concepts in the state signatures their goals or
services define. Within the orchestration extraction of parts from, and aggre-
gation of parts into, messages may be defined via the use of controlled-mode
concepts.

9.5 Grounding and Execution 135

It has been proposed [24] that in the spirit of WSMO, where mediation
between all dissimilar parts is explicit, dataflow between participants should
be defined via mediators. While existing GG, WG and WW mediators are
proposed, there remain problems of ambiguity since multiple uses may be
made of e.g. a given goal in an orchestration, and entirely different dataflows
may be defined between e.g. two goals in different orchestrations. Furthermore,
higher-level representations of orchestrations may define dataflow between
other constructs. For this reason we are currently developing a new concept
to represent the prototypical performance of goals etc. [99]. To each instance
a unique identifier can then be assigned, allowing a specific dataflow to be
defined via the new concept of a PP mediator, i.e. a mediator between two
unambiguous performances of the underlying entity. This is a subject of on-
going research.

Dataflow in BPEL is defined via reading and population of variables by
service invocations and other copying between variables via assign activities.
It has been suggested that the semantic BPEL language being defined could
replace syntactically-typed variables with semantic concepts in state signa-
tures, and define dataflow with explicit mediation via PP mediators, but this
is a subject on on-going research.

9.5 Grounding and Execution

In the previous sections we have presented the various tasks that arise in a
service-oriented architecture and how semantics can increase the degree of au-
tomation. However, currently deployed Web services are generally described
only on the level of syntax, specifying the structure of the messages that a
service can accept or produce. In particular, Web Service Description Lan-
guage [27] describes a Web service interface as a set of operations, where an
operation is only a sequence of messages whose contents are constrained by
XML Schema [128]. Such descriptions, introduced in Chapter 4, are referred
to in the following as syntactic descriptions of Web services.

Certain tasks require that semantic processors have access to the informa-
tion in the syntactic descriptions. For example, to invoke a discovered service,
the client processor needs to know how to serialize the request message. In
this section, we present this linking (i.e. grounding) between the semantic
and syntactic descriptions. In general, we distinguish between two types of
grounding: on the one hand, it has to be known how the content of a message
relates to its ontological counterpart (data grounding); on the other hand,
the order of possible invocations represented in the choreography interface
needs to be mapped to the operations in the syntactic description (behavioral
grounding) [76].

Web services can be understood as entities that exchange semantic (onto-
logical) data. Data grounding is the process that must transform the semantic

136 9 Semantic Web Service Usage Tasks in WSMO

data into XML messages that will be sent over the network (according to se-
rialization details obtained from the WSDL binding), and also specify how
received XML messages are interpreted as semantic data.

A behavioral grounding must handle the multiplicity of operations of a
Web service interface in WSDL. WSDL itself does not specify any ordering
or dependencies between operations; only the semantic description within a
choreography interface tells the client what particular operations can be in-
voked at a specific point in the interaction.

9.5.1 Location of Grounding

We have described what kind of information must be specified in the ground-
ing; however, we have not yet elaborated on the place of that information.
There are three options for placing grounding information: (1) placing the
grounding in the semantic description document, (2) embedding the ground-
ing within WSDL documents, and (3) externalizing the grounding to a third
document.

Placing the grounding within the semantic description document makes
it directly accessible from the semantic data, which follows the order of the
tasks in the Semantic Web service framework, i.e. discovery uses the semantic
data and then relies on some sort of grounding mechanism in order to invoke
the discovered service. On the other hand, placing the grounding directly
in the WSDL documents (option 2) can enable the discovery of semantic
descriptions in WSDL repositories such as UDDI [10]. This approach is taken
by WSDL-S [1], a specification of a small set of simple WSDL extensions
that can be used with any Semantic Web service modeling framework. An
externalized grounding (outside both WSDL and the semantic descriptions)
does not provide easy access to the grounding information from either the
semantic or the syntactic side, but it may introduce more flexibility for reuse.
However, at the time of publication, externalized grounding is not supported
by any specification.

The options listed above are not exclusive, as grounding information can
be put redundantly in both the semantic description document and the WSDL
document. This could be done by using the native grounding mechanism in
WSMO to point to WSDL and at the same time annotate the WSDL docu-
ment with WSDL-S elements pointing back to WSMO.

9.5.2 Data Grounding

Web services generally communicate with their clients using XML messages
described in XML Schema. At the semantic level, however, Web service in-
puts and outputs are described using ontologies. A semantic client then needs
grounding information that describes how the semantic data should be writ-
ten in XML and then sent to the service. Additionally, the semantic client
needs grounding information that describes how XML data coming back from

9.5 Grounding and Execution 137

the service can be interpreted semantically. In other words, the outgoing data
must be transformed from an ontological format to XML and, conversely, the
incoming data must be transformed from XML to an ontological format. Since
the semantics of XML data is only implicit – at best it is only described in
plain text – a human designer is required to specify these data transformations
so that they can be executed when a semantic client needs to communicate
with a syntactic Web service.

In Fig. 9.9 we present a systematic way of distinguishing between the
various approaches to data grounding. The figure shows a fragment of the
ontology of the semantic description of an example Web service in the upper
right corner and the XML data, described in WSDL, in the lower left corner.
The three different paths between the XML data quadrant and the semantic
quadrant represent different options for where the transformations can be
implemented: at the XML level, at the semantic level, or the direct option
spanning between the two levels.

Fig. 9.9. Approaches to data grounding

First, since semantic Web ontologies can be serialized in XML, an XSLT
(or similar) transformation can be created between the XML data and the
XML serialization of the ontological data. Only in the case where the XML
format of the ontological data is actually suitable for a particular Web service
can the transformation can be avoided. Second, an ad hoc ontology can be
generated from the XML Schema present in the WSDL document (upper left
corner), with automatic transformations (lifting/lowering) between the XML
data and their equivalent in the ad hoc ontology. Then a transformation using
an ontology-mapping language can be designed to get to the target ontology.
Finally, a direct approach to mapping between the XML data and the target
semantic data is also possible.

138 9 Semantic Web Service Usage Tasks in WSMO

XML-Level Transformations

In this approach, the grounding needs to link the inputs and outputs of the
service to the appropriate XSLT transformations. With these links in place,
the actual run-time process is very simple: assuming that a client, for example,
wants to send a message to a Web service, it serializes its ontological data into
the XML syntax of WSML and then runs the appropriate XSLT stylesheet,
sending the result to the service. A message from the service goes through
the inverse process. First it is transformed, using a reverse XSLT stylesheet,
into XML. The client then parses the result directly into ontological data and
processes it accordingly.

This approach is very simple and uses proven existing technologies, but it
has a notable disadvantage: the XML representation of ontological data con-
tains an unpredictable mixture of hierarchy and interlinking, as ontological
data is not structured according to XML conventions (we say that ontological
data is not native XML data). Therefore, creating robust XSLT transforma-
tions for complex data structures is a considerable task. With simple data,
however, this problem is negligible, and since XSLT processors are readily
available and many XML-savvy engineers have some XSLT experience, this
approach is an ideal initial candidate for data grounding.

Exchanging Ontological Data

The XSLT transformation approach described above makes use of the fact
that Semantic Web service ontology languages can be serialized in XML. In
certain situations, this XML format could in fact be suitable for the WSDL
interface of a Web service when the data will seldom be viewed as actual
XML. For example, this is ideal for quick Semantic Web service prototyping
of Semantic Web services, or when only semantic clients are expected to use
a particular service.

In these scenarios, the WSDL description of the messages will only indicate
that they contain WSML/XML, and the semantic description will say (as it
does regardless of the grounding approach taken) exactly what data goes in
the inputs and outputs. The grounding needs only to link the semantic inputs
and outputs with particular WSDL messages, which is done implicitly by all
the behavior-grounding approaches that we later describe in Section 9.5.3.

This approach does not require any human designer to create grounding
transformations, which indeed saves a significant amount of effort. On the
other hand, XML serializations of ontological data are not native XML data,
and so they may be hard to comprehend or hard to process by XML tools.
Consequently, services that use this grounding approach may not integrate
well with non Semantic Web services.

9.5 Grounding and Execution 139

XML Schema Ad Hoc Ontology

In this approach, an ad-hoc ontology is automatically generated from the
schema of the XML messages according to a conceptual mapping between
the XML metamodel and the ontological metamodel. Along with this ad-
hoc ontology, a set of mapping rules is also generated for the lifting/lowering
transformations between the XML messages and instances of the generated
ontology.

If the designer of the semantic description finds this generated ontology
suitable for describing a particular Web service, this grounding can be fully
automatic. On the other hand, if the generated ad hoc ontology cannot be
used, grounding involves an additional transformation between instances of
the ad hoc ontology and instances of the target ontology used by the service
description. This transformation step uses ontology mediation.

Similarly to the XSLT approach, the ad hoc ontology approach has the
benefit of reusing existing transformation technologies (ontology mediation in
this case). However, the disadvantage is that the generated ad hoc ontology is
not a native ontology (it is structured as a restrictive schema for data valida-
tion, as opposed to a descriptive ontology for knowledge representation), and
this ontology can lack or even misrepresent semantics that are only implied
in the XML. This can complicate the task of mediating between the ad hoc
ontology and the target ontology describing the service, similarly to the way
that non native XML data can complicate an XSLT transformation.

Because WSMO puts a heavy focus on mediation, WSMO grounding is
currently being developed in the direction of this approach, using WSMO
ontology mediation for the transformations.

Direct-Mapping Language

Although we are not aware of any work in this direction in either of the
Semantic Web service frameworks, we envision a third option that transforms
between the XML data and the ontological data directly, using a specific
transformation language.

While a new transformation language would have to be created, it could
be optimized for the common transformation patterns between native onto-
logical data and native XML. Manually created mappings would be simpler
to understand, create and manage than in the previous approaches. If the
disadvantages of the other approaches prove substantial, then development of
such a new language should be considered.

9.5.3 Behavior Grounding

The choreography description allows the client to know what messages it can
send or receive at any specific point during interaction with a service. Because

140 9 Semantic Web Service Usage Tasks in WSMO

WSMO reuses WSDL, the choreography model needs to be tied to the WSDL
model of operations.

In WSMO, choreography is modeled as an abstract state machine (Chap-
ter 6), where the states are described with an ontology, and the client is
(abstractly) allowed to read and write instances of certain concepts that are
marked as “in”, “out”, or “shared”, the latter meaning both “in” and “out”.
The state transition rules model the reactions to incoming data and the cre-
ation of outgoing data.

With this choreography model, WSMO is not limited to the message ex-
change view of Web services (see [39] (Triple Spaces) for an alternative). The
purpose of grounding is to give the client all the necessary networking details
so that it can successfully communicate with the service. When a client follows
the WSMO choreography state machine, it knows from the activated transi-
tion rules that some particular data can be sent to the service. The grounding
now binds this data to a WSDL operation request, and if the operation has a
response message, then the client knows that it can expect specific data back.

When creating the grounding, the designer takes into account all the “in”,
“out”, and “shared” concepts (since they are manipulated by the transition
rules), and correlates “in” and “shared” concepts with input messages, and
“out” and “shared” concepts with output messages.

WSMO is based on ontological models of Web services. These formal,
logic-based models describe those aspects of Web services that are necessary
for automating tasks such as service discovery, negotiation, composition, and
invocation. On the other hand, the IT industry deploys Web services with
only limited description capabilities, sufficient when Web services are mostly
used, composed, and deployed manually. The industry standard for Web ser-
vice description is WSDL, a language that views Web service interfaces as
collections of operations, combined with XML Schema, a validation-oriented
language for describing XML data structures.

We have indicated how WSMO grounding information should be specified.
Data grounding is the main part of the grounding of Semantic Web services,
as there are several different approaches to one complex problem. The current
frameworks for Semantic Web services take various approaches: WSMO has
initially decided to use an approach that uses an intermediate XML Schema
ad hoc ontology. Together with the abstract ontology-mapping language pre-
sented above and the existing tool support, this provides the most efficient
means in our settings for achieving the task.

10

Tools

In this chapter, we present the tools that help enable Semantic Web services
using WSMO. Although Semantic Web services are fairly recent technologies,
there are many software projects specifically dedicated to providing support
for WSMO and WSML. This chapter is organized as a survey of existing
support tools. We divide our analysis into three parts: first we look at in-
frastructure components such as parsers, and standard libraries, then we list
the available design-time components for creating semantic descriptions, and
finally we present the two major execution environments that are based upon
WSMO.

10.1 Infrastructure

An essential precondition for any technology to be adopted is an infrastructure
in terms of reusable software libraries. This basic software component enables
both academia and business to start experimenting with a technology and to
exploit it in specific application scenarios.

If one takes for example the XML technology, it is quite easy to get started.
First off, there are a wide range of editors available, from commercial offerings
for several hundreds of euros to numerous open source projects. Equally im-
portant as the editors are the widely accepted libraries for working program-
matically with XML. One need no longer code ones own implementations,
but can instead choose between existing implementations that already pro-
vide a basic functionality for parsing, validation, and manipulation of XML
documents. Furthermore, there is support available in the form of higher-level
processers (e.g. SAXON1 for XSLT). The tool support available has signifi-
cantly lowered the entry barrier for using XML technology.

This model can be applied similarly to the Semantic Web: a language or
conceptual model gets adopted as soon as the basic infrastructure is in place.

1 http://saxon.sourceforge.net/.

142 10 Tools

In the following, we shall present those tools that provide basic services for
WSMO and WSML.

10.1.1 The WSMO API

The WSMO API is a Java application programming interface that provides
a generic interface for programmatically accessing a WSMO description. The
API is an open source project that contains functionality for WSMO ontolo-
gies, Web services, goals, and mediators. The WSMO API is bundled with a
default implementation called WSMO4J.2 WSMO4J implements all the inter-
faces of the WSMO API. The two together provide a foundation upon which
other applications such as editors and reasoners are based. Its functionality
it can be compared to that of the Jena library,3 which provides basic services
for the ontology languages already standardized by the W3C (i.e. RDFS and
OWL).

WSMO4J includes parsers and serializers for the human-readable syntax
and the XML syntax of WSML. Validators for the five different variants of
the WSML language are also included. These validators go beyond simply val-
idating the syntax of the underlying WSML document and provide detailed
information regarding possible misuse of features of WSML. Examples of such
misuse would be specifying cardinality constraints in a WSML document when
the WSML variant is WSML-Core (which does not support attribute cardi-
nality) or using logical constructs in an axiom that is supported only by more
expressive variants.

10.1.2 The WSML Reasoner Framework

Another building block of the basic infrastructure is reasoning support. In
the field of artificial intelligence, various forms of reasoning have been inves-
tigated for a long time, for example for instance checking, logical entailment,
consequence finding, and abductive reasoning. Corresponding algorithms have
been investigated for various logics. Taking this general perspective, a tradi-
tional database task, namely finding answers to given queries with respect
to a database (instance retrieval or query answering), can be seen as a rea-
soning task as well. It is necessary to distinguish between the various forms
of reasoning because they serve significantly different purposes. These forms
of reasoning are implemented by means of specific algorithms, which take a
well-defined set of input information and are expected to deliver results of a
certain kind. The algorithms for different reasoning tasks are based on differ-
ent techniques and thus differ significantly.

The reasoning tasks that we consider as being relevant in the context of
WSML are the following:

2 http://wsmo4j.sourceforge.net.
3 http://jena.sourceforge.net/.

10.1 Infrastructure 143

• Logic-based reasoning tasks: reasoning tasks that are not specific to on-
tologies but are usually performed with other kinds of knowledge bases.
As the most relevant examples of such reasoning tasks, we consider:
– instance retrieval;
– logical entailment;
– consequence finding.

• Ontology-specific reasoning tasks: reasoning tasks that refer specifically
to ontologies and their modeling primitives. Typical examples from the
description logic community are:
– concept satisfiablity: to check whether a concept is satisfiable;
– concept subsumption: to check whether a subsumption relationship

holds between two concepts;
– relation subsumption: to check whether two relations are subsumed by

each other;
– classification tasks: for example, to compute a hierarchy of named con-

cepts in a knowledge base (knowledge base classification), or to identify
the most specific concepts.

• Reasoning tasks specific to other top-level elements in WSMO: this in-
cludes tasks related to Web services, goals, and mediators. Examples would
be:
– goal–capability matching;
– choreography matching.

Many of the reasoning tasks mentioned in the third class are in fact re-
ducible to tasks of the first and second class. Furthermore, note that there
are many more reasoning tasks, such as abductive reasoning, that have not
been explicitly mentioned. In fact, the current framework focuses only on the
reasoning tasks associated with instant retrieval.

From an implementation perspective, various, different reasoners are al-
ready available for the tasks outline above; particulary, for the well-understood
reasoning task of instance retrieval for use with the rule-based WSML variants
(WSML-Core, WSML-Flight, and WSML-Rule). More precisely, WSML-Core
and WSML-Flight can be mapped to Datalog, i.e. from the function-free Horn
subset of first-order logic to Datalog¬ (Datalog extended by a default nega-
tion). WSML-Rule can be mapped to Prolog (Datalog¬ extended by function
symbols). WSML2Reasoner simply integrates different reasoners into a com-
mon framework that uses WSML as a concrete syntax. Figure 10.1 illustrates
how existing systems are integrated into the framework.

The framework defines a general API for creation and interaction with a
WSML reasoner of any kind. WSML ontologies are transformed to a syntac-
tically simpler form and finally to a pure logical representation in terms of
Datalog rules. The specific semantics of the object-oriented modeling primi-
tives in WSML is captured by auxiliary rules. An API for wrapping external
Datalog engines has been defined and instantiated for a few systems. A spe-
cific auxiliary data structure that can be reused for different wrappers is a

144 10 Tools

Fig. 10.1. Architecture of the WSML2Reasoner framework

symbol map, which takes care of translating the WSML-specific naming con-
vention, in particular that of IRIs, into symbol names that are actually valid
for a specific tool.

The framework is open source and can be downloaded from http://dev1.
deri.at/wsml2reasoner/. As indicated in Fig. 10.1, MINS4 and KAON25 are
actively supported reasoners and can also be downloaded from the respective
project Web sites.

10.1.3 Online Validation and Reasoning

The latter two online services provide, essentially, a simple interface on top of
the components described above. Making these components available using a
standard HTML interface addresses the basic needs to begin working with the
Web Service Modeling Language. Instead of the need to download and install
some software these services are immediately available to the interested user.

The WSML Validator 6 is an online service that allows one to check a
WSML specification for validity. For syntactic mistakes, it provides basic hints
for fixes and moreover it also checks the specification according to the expres-
sivity level (i.e. the WSML variant used). Additionally, it provides detailed
explanations when in case a specification does not adhere to a variant. This
can be particulary useful for “debugging” logical expressions.

Another online service provided is the WSML reasoning service.7. This
service supports query answering for the WSML variants Core, Flight, and
Rule. Figure 10.2 shows the form fields, with the input ontology and the query
in the upper frame. The lower frame shows the query result. In this example,

4 http://dev1.deri.at/mins/.
5 http://kaon2.semanticweb.org/.
6 http://tools.deri.org/wsml/validator/.
7 http://tools.deri.org/wsml/rule-reasoner/.

10.2 Design Tools 145

a simple ontology about family relationships is used. The query basically asks
for all women who are known to have a husband. Although it is not explicitly
declared that Marge has a husband named Homer, the reasoner can infer this
through the inverseOf declaration of “hasWife/hasHusband”.

Fig. 10.2. The WSML online reasoning service

In the spirit of a service-oriented architecture both services are not only
accessible via a HTML interface, but also using Web service technology8.

10.2 Design Tools

The creation and editing of precise formal descriptions is a cumbersome task.
As the number of specifications increases, tool support is essential. The frame-
work provided by design tools is dedicated to easing this task. All design tools
at the time of writing of this book are based on the Eclipse platform. This has
a number of advantages; the most striking one is that the platform allows one
to combine any individual tool in a way that best suits a particular task. We
first introduce the Eclipse platform and then elaborate on the various WSMO
design tools.

10.2.1 The Eclipse Platform

The Eclipse9 framework is an open source development led by IBM. It is
a framework for deploying graphical tools using the Java programming lan-
guage. A common misconception is that Eclipse is a Java editing environment,
8 The respective WSDL definitions can be found at http://tools.deri.org/

services.
9 http://www.eclipse.org.

146 10 Tools

when in fact it is merely the case that the Eclipse framework is used to deploy
the Java Development Environment (JDE). Eclipse can be used to create com-
plex functionalities from simple GUI plug-ins. It allows many different tool
developers to create discrete editors for documents and to create views of the
content contained within those documents. These editors and views can then
be drawn together into a perspective, which gives the collection of plug-ins a
context.

Editors, views and perspectives can be created and integrated with Eclipse
quite simply, by implementing a number of extension points. In general, most
Eclipse plug-ins are shipped alone for individual users to deploy in the Eclipse
instance already installed on their machine. It is also possible to create a
completely branded application containing only the desired plug-ins which
can be shipped to users for installation. This flexibility is leading to many
commercial and research tools being developed for the Eclipse framework and
is resulting in a huge increase in the popularity of Eclipse.

Fig. 10.3. The Eclipse platform and the WSMO tools developed on it

Figure 10.3 shows the various tool sets developed on top of the Eclipse plat-
form. All of the tools are based on two foundational components: the plug-in
framework of the Eclipse platform and the data model provided by the WSMO
API. Together, they provide the possibility to combine the functionality of dif-
ferent tools using features of Eclipse such as a “Perspective”, which configures
multiple views (provided by different sources) into one common application.
The main WSMO tools are depicted by the three boxes on top of the base
layer. The Web Service Modeling Toolkit (WSMT) focuses on providing a
graphically based editing environment with special support for connecting to
execution environments; WSMO Studio is a form-based editing environment
that allows the manipulation of the various WSMO elements; and DOME (Dis-
tributed Ontology Management Environment) provides a tree-based WMSO
editing approach.

10.2.2 WSMT

The Web Service Modeling Toolkit is an open source project10 that is mainly
driven by members of the Digital Enterprise Research Institute (DERI). The

10 http://wsmt.sourceforge.net.

10.2 Design Tools 147

toolkit combines a number of separate editors and views. Its main focus is on
graphical visualization and support for modeling, executing and monitoring
Web services.

10.2.3 Graphical Visualization and Editing

Figure 10.4 shows a screenshot of WSMT. This nicely shows how the Eclipse
platform is able to combine several different views in a common perspec-
tive. The WSML workspace, shown in the upper right corner, can be used
to organize the WSML files (in the picture titled “Navigator”). On the right-
hand side, the topmost plug-in allows the user to modify WSML descriptions
using a graphical view of the WSML elements. The ontology about family
relationships used earlier to illustrate the Web-based reasoner is used here
again. The graph-based view nicely illustrates various relationships such as
class hierarchy (Human>Woman), instantiations (Woman>Marge), and in-
verse relations (hasHusband>inverseOf(hasWife)). The Visualizer is able to
focus on a specific entity or to view the ontology graph as a whole. Other as-
pects and viewing options can be filtered depending on the user’s needs (e.g.
hiding all instances). At the same time, editing the source code of the ontol-
ogy is also possible (right middle window). This plug-in provides well-known
features of advanced development environments, such as syntax highlighting,
code folding and syntax completion. On the bottom right-hand side, an ad-
ditional “Problems view” provides information about the status of the files
in the project, obtained from the validation functionality. This allows an on-
tology engineer to quickly spot problems, such as not specifying the WSML
variant, as is shown in Fig. 10.4.

10.2.4 Integrated Reasoning Support

The functionality of the WSML2Reasoner framework has been made available
within the Eclipse environment via a specific extension point. A special view
provides an interface that allows the user to execute queries over the currently
open ontology. The results of the query are displayed as a list of variable bind-
ings similar to that already presented for the online reasoner (see Fig. 10.2).
However, the advantage over a simplistic HTML interface is that the results
can be selected, and the view of the ontology is automatically focused on
the corresponding ontology element. For example, selecting a row from the
results that denotes a concept will focus WSMOViz (the WSMO Visualizer
component) on the corresponding concept.

10.2.5 Data Mediation

The concepts of data mediation introduced in Section 9.3 are implemented
in WSMT. The graphical editor of WSMT uses a semiautomatic approach

148 10 Tools

Fig. 10.4. The Web Service Modeling Toolkit

in which a component first suggests a mapping which the user must later
refine. Once these mappings have been created, they can be used to transform
instances of the source ontology into instances of the target ontology. The
WSMT data mediation plug-in for Eclipse is the design-time component that
is used to create these mappings.

Fig. 10.5. Creating mappings in the data mediation plug-in

Figure 10.5 illustrates the two phases of data mediation: the design-time
component (depicted on the left) and the run-time component (depicted on the

10.2 Design Tools 149

right). The design-time component displays two ontologies (source and target)
and provides, in the bottom pane, means to specify mappings between selected
entities. These mappings are stored in an execution environment, where they
can be used on demand if an actual transformation between heterogenous
ontologies is needed.

10.2.6 WSMO Studio

WSMO Studio (Fig. 10.6 is a collection of tools for editing WSMO descrip-
tions developed for the Eclipse framework by OntoText Labs11, part of Sirma.
WSMO Studio displays the entities contained the WSML document as a tree
hierarchy and allows the user to edit these entities via a collection of forms.
The approach taken in WSMO Studio is very similar to that taken in Protégé12

(an ontology-editing suite developed by Stanford University); however, instead
of providing a collection of tabs that can be used to edit different objects in
the ontology, a unique editor is available for each object type.

Fig. 10.6. Concept editor in WSMO Studio

Editing a given entity in a WSML document is done by double-clicking
on the entity in the tree hierarchy. When the user does this, an editor is
opened specifically for this entity. The GUI widgets contained within the
editor are built dynamically upon the functionality supported by the given
11 http://www.ontotext.com.
12 http://protege.stanford.edu.

150 10 Tools

WSMO entity. WSMO Studio supports ontologies, Web services, goals, and
mediators and allows the user to manage all subtypes of these entities.

WSMO Studio also offers a syntax-highlighting text editor for the WSML
human-readable syntax. This text editor allows more advanced users who are
more comfortable editing the WSML syntax to gain some advantage from the
tool set. Keywords in the WSML syntax; for example, “concept”, “instance”,
“subConceptOf”,etc. are highlighted in a color of the user’s choice. Further-
more WSMO Studio provides access to a set of import and export functions
from and to WSML, a subset of OWL-DL, and an XML representation of
WSML. The most recent release (at the time of writing) includes a choreog-
raphy designer, as well as front ends for ontology/service/goal repositories,
including an integrated repository based on a triple store and an IRS-III
adapter (an execution environment describe in section 10.3.2).

10.2.7 DOME

The DERI Ontology Management Environment (DOME)13 (Fig. 10.7) is a
tool suite for managing WSML documents developed by the Ontology Man-
agement Working Group.14 DOME can be used for editing and browsing,
mapping and merging, and controlling the versioning and evolution of ontolo-
gies. Ontologies are displayed using a tree hierarchy, and all editing is done
via right-click menus on this tree hierarchy.

Fig. 10.7. DERI Ontology Management Environment (DOME)

The editor which contains the tree hierarchy also contains a second tab for
editing the underlying human-readable WSML syntax of the visible ontology.
Any changes made in the text editor are immediately visible in the tree hier-
archy and vice versa. The interaction paradigm of this tool is based mainly
on the “drag-and-drop” methodology.

Other views provided allow the instances of a selected concept to be seen
and the nonfunctional properties of a given entity to be changed. The instance
13 http://dome.sourceforge.net.
14 http://www.omwg.org.

10.3 Execution Environments 151

viewer allows one to see the instances of a concept without browsing through
the tree hierarchy.

When two or more ontologies are opened in DOME, it is possible to cre-
ate mappings between these ontologies. These mappings can later be used for
query rewriting and ontology merging to resolve heterogeneity issues, i.e. in
cases where two business partners use different ontologies to describe the same
domain, these mappings can be used to allow the two partners to communi-
cate.

10.3 Execution Environments

The execution environments of Semantic Web services are complete frame-
works which serve as an architecture to integrate the tasks involved in the
use of Semantic Web services from goal specification to execution. There exist
two WSMO-compliant implementations which follow the conceptual model of
WSMO, to be discussed here.

10.3.1 The Web Service Execution Environment (WSMX)

The amount of human interaction required in the process of finding and using
Web services is a serious limitation on their use. Since WSMO and its WSML
formalization allow Web services to be described semantically, a large portion
of this process can be automated. The Web Service Execution Environment
(WSMX)15 is a reference implementation of WSMO and is an execution en-
vironment within which semantic descriptions of users’ goal and providers’
Web service can be used to discover, compose, mediate, select, and invoke
Web services that match the end user’s requirements.

The key aim of WSMX is to define mandatory functional services, decou-
ple their functionalities from one another, and describe components’ interfaces
in terms of the offered functionality. One of the design principles of service-
oriented architectures (and Web services in general) is the separation of the
implementation of the service from its externally visible description. Such de-
sign allows the replacement of one service with another as long as the new
service supports a stable interface. Similarly, WSMX does not define services
in terms of their design or implementation details, but only in terms of ex-
pected functionality and their externally visible behavior.

Components

WSMX has a component-based architecture (Fig. 10.8), with each compo-
nent in the architecture performing a discrete piece of functionality. These
units of functionality are drawn together by the formally described execution
semantics of the system.
15 http://www.wsmx.org.

152 10 Tools

Fig. 10.8. WSMX components

Service-oriented architectures typically consist of a set of services and a
coordinator that combines the services and puts them to use. Talking about
SOAs in the context of WSMX can sometimes be misleading since WSMX is
an SOA and at the same time it is the coordinator of another, larger SOA.
The WSMX differentiates between two types of services: application services
(such as discovery, choreography, and data and process mediation) and the
base service layer (e.g. storage). Application services are mandatory for en-
abling the infrastructure to deliver its functionality as defined by its execution
semantics. User services are exposed by information systems external to the
WSMX infrastructure, but they are still coordinated using WSMX platform
services. The WSMX recommendation defines the scope of particular plat-
form services in terms of their functionality, whereas it remains silent about
the scope and functionality of user services. Some of the components of WSMX
are the following:

• Discovery. The discovery component of WSMX is responsible for finding
Semantic Web service descriptions given a user’s semantically described
goal. This component operates over all of the Web service descriptions
stored in WSMX’s resource manager.

• Adoption. It is not feasible to presume that a Web service will be de-
scribed in an exhaustive manner. Considering the Amazon book service,
for instance, it would not be possible for Amazon to update the semantic
description every time a new book was made available or a price changed.
The adoption component of WSMX is responsible for communicating with
each of the discovered services, obtaining the additional information re-
quired on the basis of the interfaces provided by the service, and selecting
which of the discovered services is most suited to the user’s requirements.
The user’s goal can contain preference information that can be used by
the selection component to select between the various services on the basis
of their nonfunctional properties. These nonfunctional properties include
availability, reliability, scalability, and financial considerations.

10.3 Execution Environments 153

• Composition. Part of a service interface describes how the service makes
use of other services to achieve its functionality. Composition and chore-
ography are related concepts but distinct from each other. The composi-
tion component is responsible for making use of other services in order to
achieve its functionality. It is the WSMX implementation of the strategies
discussed in Section 9.4.

• Choreography. The choreography part of a service interface describes the
behavior of the service from a client’s point of view. Any user of a Web ser-
vice, automated or otherwise, is a client of that service. The choreography
engine is responsible for using the choreography descriptions of both the
service requester and the provider to drive the conversation between them.
It is the responsibility of the choreography engine to maintain the state of
a conversation and to take the correct action when that state is updated.
For example, updating of the state of a choreography instance may occur
as the result of a message received from a service provider. The consequent
action, as described in the choreography instance, could be to forward the
message unchanged to the service requester. The choreography engine in
the WSMX architecture has three main responsibilities: (1) evaluating the
transition rules defined in the choreography interface, (2) determining the
legal instances for the last choreography step, and (3) managing invocation
requests to and from the communication manager.

• Data mediation. The data mediation component of WSMX is responsible
for performing instance transformation when the ontologies used by the
goal are different from those used by the Web service. Data mediation may
occur at many different points in the execution semantics. Data mediation
in WSMX is a semiautomatic process, in which a domain expert must first
create the mappings between the two ontologies. This manual step occurs
in an offline mode. Once these mappings have been created and registered
with WSMX, the data mediation component can automatically mediate
between these two ontologies in real time.

• Process mediation. The process mediation component is used to resolve
heterogeneity issues between the public processes of the requester and
the provider. For example, the requester may expect the user name and
password to be sent together, whereas the provider may expect them sep-
arately. The WSMX process mediation component provides an automatic
mechanism for resolving these process mismatches.

This is only a subset of the components present in the WSMX architecture.
Other, more low-level components include a resource manager for storing and
retrieving data; a communication manager for receiving requests from the
user and communicating with Web services; and the WSMX core, which is
responsible for creating and tracking the execution semantics of each job in
the system.

Developer and end user tools are on the periphery of WSMX. Various de-
veloper tools have already been presented that aid the design-time process

154 10 Tools

underlying the architecture. End user tools represent those tools that draw
together application services according to a particular problem domain. A
sketch of these tools will be given in Chapter 11. Next, we shall discuss a par-
ticularity of WSMX, which is not obvious from this sketch of the components.
For the components to interact properly, a “glue” is needed that regulates the
interplay of them: execution management.

Execution Management

Execution management has the role of coordinating the execution of the ap-
plication services in a meaningful scenario. Such scenarios are called execution
semantics, and they can be seen as low-level projections of the requirements
of the application layer. The execution semantics define the way the appli-
cation services have to work together to complete a useful scenario. Having
the execution semantics as a separate concept in the architecture is the first
step towards a highly decoupled system. That is, given a set of application
services, when new execution semantics to be executed are defined, the whole
architecture basically changes the way it offers a certain functionality, or even
the functionality itself. As such, WSMX is a packaged environment capable
of completing a “round trip” starting from accepting a user’s goal, and then
performing discovery and selection, finding the most suitable Web service, me-
diating when necessary, invoking the service, and returning the results. But
also, by using different execution semantics, WSMX can simply discover and
return the services found to the user, allowing the requester itself to perform
selection.

In WSMX, much of the process of finding and using Web services can be
automated. Automatic discovery offers a great advancement over the current
situation, allowing users to find services that can fulfill their requirements
without spending large amounts of resources. Mediation and invocation also
reduce the effort of manually interpreting interfaces, inputs, and outputs of
Web services and switching data formats to fit the formats required by those
Web services.

10.3.2 The Internet Reasoning Service IRS-III

IRS-III [33] is a framework and an implemented platform that acts as a broker
mediating between the goals of a user or client and the available deployed
Web services. Thus IRS is not a framework on its own, but uses WSMO as
its ontology and follows the WSMO design principles. The conceptual model
of IRS-III is based on five design principles:

• Support capability based invocation. IRS-III enables clients (human users
or application programs) to invoke a Web service by simply specifying a
concrete desired capability. IRS acts as a broker that finds, composes, and
invokes appropriate Web services in order to fulfill the request.

10.3 Execution Environments 155

• Ease of use. IRS interfaces are designed such that much of the complexity
surrounding the creation of Semantic-Web-service-based applications is
hidden. One-click-publishing is a corollary of the above design principle.

• Agnostic to service implementation platform. Within the design of IRS,
there is no strong assumption about the underlying service implementation
platform.

• Connected to the external environment. To support this, functions and
relations can be defined in order to make calls to external systems, for
example, invoking a Web service.

• Inspectability. In many parts of the life cycle of a software system, it is
important that the developers are able to understand the design and be-
havior of the software being constructed. This principle is concerned with
making the semantic descriptions accessible in a human-readable format.
The key is that the content and form are easily understandable by the
builders of Semantic Web service applications.

Many of the direct principles of IRS are application-focused, but from
the first design principles, we can say that they largely follow the WSMO
approach described in this book. The IRS-III ontology is based on the WSMO
conceptual model; however, it has a number of differences. To achieve the goal
of capability-based invocation, Web services are required to have input and
output roles, and goals linked to Web services via mediators. Web services are
linked to goals inherit the input and output roles of the goals. In WSMO, the
mediation service slot of a mediator may point to a goal that declaratively
describes the mapping. Goals in the context of a mediation service play a
slightly different role in IRS-III. Rather than describing a mapping, goals are
considered to have associated Web services and are therefore simply invoked.

IRS clients are assumed to be able to formulate their request as a goal
instance. This means that it is only choreographies between IRS and the
deployed Web services that are required. Choreography execution in IRS-III
thus occurs from a client’s perspective. That is to say, to carry out a Web
service invocation, IRS executes a Web service client choreography, which
sends the appropriate messages to the Web service deployed. In contrast, the
current WSMO choreography describes all of the possible interactions that a
Web service can have.

At the heart of the server of IRS-III is the WSMO library, where the
WSMO definitions are stored using the representation language OCML [96].
The library is structured into knowledge models of WSMO goals, Web ser-
vices, and mediators. The structures of each knowledge model are similar, but
typically the applications consist of mediator models importing from relevant
goal and Web service models. Following our design principle of inspectability,
all information relevant to a Web service is stored explicitly within the library.
Within WSMO, a Web service is associated with an interface that contains a
separate orchestration and choreography. Orchestration specifies the control
and dataflow of a Web service, which invokes other Web services (a composite

156 10 Tools

Web service). Choreography specifies how to communicate with a Web ser-
vice. The choreography component communicates with an invocation module
able to generate the required messages in SOAP format. A mediation handler
provides functionality to interpret WSMO mediator descriptions, including
running data mediation rules, invoking mediation services, and connecting
multiple mediators together. Following from the principle of openness men-
tioned above the orchestration, choreography, and mediation components are
themselves Semantic Web services.

10.4 Summary

In this chapter, we have presented the most relevant tools for enabling Seman-
tic Web services using WSMO. Despite the fact that the first implementation
efforts only started a little over a year ago, their intense interest has led to
a diversified landscape of tools. While the infrastructure components can be
regarded as quite stable higher-level components such as the mediation en-
gine of WSMX are still experiencing a period of great evolution. Their use in
various industrial and research projects is rapidly increasing their quality.

Furthermore, it should be noticed that most developments are being driven
as community efforts under open source licenses, which allows early adopters
to reuse and extend existing solutions. Given the dynamics of the subject
matter the interested reader is encouraged to look at http://tools.deri.
org/wsml, which provides up-to-date information on the state of the available
tools.

11

Applications of WSMO

A new technology can only be justified by successful application. Although
WSMO is a relative new approach, there are already a few realized application
scenarios. This chapter depicts some existing applications in the areas of e-
commerce, e-government, and e-banking that have been developed mainly
in joint academic and industrial efforts. We discuss the technical challenges
in each area, and outline how semantically enabled Web service technology
allows advanced support for these.

11.1 E-Commerce

E-commerce is a collective term for IT-based support for trading and bargain-
ing between companies and end-consumers, as well as between enterprises.
The former is commonly referred to as business-to-customer (B2C), and the
latter as business-to-business (B2B) commerce. In both areas, technical sup-
port is evidently important, in order to ease processing of orders, provide
sophisticated customer support, or manage industrial supply chains [114]. In-
numerable technical solutions for both B2C and B2B commerce exist that
have become an irreplaceable asset of today’s business world – from sim-
ple automated cash machines offered by nearly every financial institution or
electronic billing systems for accounting support, to automated just-in-time
supply chain management systems in the automotive manufacturing industry.

The Internet provides a novel infrastructure for e-commerce that is world-
wide accessible and easy to handle. Its growth and proliferation during the last
decade has led to a tremendous development of new, Web-based e-commerce
technologies. Nowadays, hardly any enterprise is without a professionally man-
aged homepage that provides general information and, very often, also cus-
tomer support. The dot-com hype in the late 1990s has given us numerous
applications for B2C commerce, development suites for Web-based shopping
and auction systems, and even novel business models for commerce on the

158 11 Applications of WSMO

Web. Three thriving examples are Amazon (www.amazon.com) which pro-
vides Web-based distribution of consumer goods, Ebay (www.ebay.com) an
auction system on the Internet, and travel-booking services such as Expe-
dia (www.expedia.com). These are widely used B2C commerce solutions with
remarkable market appraisal, last but not least due to the price advantages
offered [78].

However, current Web-based commerce solutions suffer from the deficien-
cies of current Web technologies that have been outlined in Part I of this
book. That is, automated processing of Web-content is awkward owing to
unstructured information representation and non semantically defined termi-
nologies. Because of this, existing e-commerce solutions deal with proprietary
data structures and make tremendous efforts to integrate information from
Web-applications with existing back-end systems for inventory or customer
management. Although automated information interchange over the Inter-
net is possible via SOAP and XML, the usage of Web service technologies
is restricted to certain application scenarios with well-defined data and com-
munication structures. In order to illustrate how Semantic Web service tech-
nologies, and especially WSMO, can be applied beneficially to overcome these
deficiencies, we shall now present the modeling of the Amazon e-commerce
service in WSMO in order to allow automated usage for B2C commerce, and
then present a WSMO-based solution for application integration within the
telecommunication sector as an example of a B2B commerce scenario.

11.1.1 B2C – The Amazon E-Commerce Web Service

As its contributing to the development of innovative e-commerce technologies
based on Web services, Amazon provides a set of Web services that allows
direct access to the Amazon technology platform (Amazon Web Services, see:
http://www.amazon.com). Among the Web services, the Amazon e-commerce
service (ECS) provides access to Amazon’s own e-commerce functionalities for
use as a building block for e-commerce applications.

Overview of the ECS Web Service

ECS exposes Amazon’s product data and e-commerce functionality to help
developers, web site owners, and merchants to leverage the data and func-
tionality that Amazon uses to run its own e-commerce business. It offers the
following functionalities: searching the Amazon catalog, looking up data for
specific products, getting customer feedback for non-Amazon vendors, setting
up shopping carts, and looking up customers’ wish lists and registries.

Through ECS, developers can access and deal with the following infor-
mation: product data, including information about product availability and
pricing for items in the Amazon catalog; content from customers such as re-
views and wish lists, and “seller information, for instance general information
and customer feedback about the wide range of vendors on the Amazon site. In

11.1 E-Commerce 159

addition, developers can use ECS for managing shopping carts of products for
purchases made through Amazon. This allows the receiving of commissions on
sales that originate with another Web site or application. By use of this func-
tionality, the technical handling of purchases is then completely transferred to
Amazon (although purchasing directly through ECS is not supported). ECS
is a read-only system, and so product data cannot be sent back to Amazon
via ECS. The operations offered by ECS can be categorized as enquiries about
operations for product data, manipulation of shopping cart, enquiries about
customer content and seller information, and auxiliary operations.

The ECS Web service is offered as a WSDL description, i.e. the opera-
tions required for consumption with the datatypes expected, along with the
technical endpoint, accompanied by a Web page with additional explanations
in order to enable developers to utilize ECS correctly. Although this allows
the ECS functionalities to be utilized and integrated within other B2C e-
commerce applications, developers need to manually study the explanations
on the Web page and inspect the WSDL description in detail. However, hav-
ing a semantic description of the Web service would enable automated usage
by the technologies presented in the preceding sections. Hence, the following
depicts the semantic description in WSMO.

WSMO Description of the ECS Web Service

The semantic annotation of the WSMO description of the Amazon ECS Web
service was achieved by analyzing its WSDL and XML Schema definitions
and lifting them to an ontological description. We refer to [77] for the com-
plete description, along with an explanation of how this was done. Because of
space limitations, we shall not display the domain ontology, and restrict our
examinations to the facilities for product search; the Amazon technology is
very mature in these respects and hence there might be the most interesting
aspects for incorporation into other B2C e-commerce solutions.

First, we study the functional description of ECS, modeled by a capa-
bility in WSMO, as shown in Listing 11.1. This defines the preconditions of
the ECS Web service, capturing all its inputs. Here, however, we display only
those related to product search. ECS can accept any of the inputs at any given
point in time, so that the overall precondition is defined as a disjunction of
all the possible inputs. The postconditions of a WSMO capability define the
conditions that hold after the Web service has been executed. For the Amazon
ECS – as well as for Web services in general – the postcondition depends on
the precondition: a specific response can be provided only if the correspond-
ing request has been provided as an input to the service. In consequence, the
postconditions are defined as implication rules: if the request provided as in-
put is of a specific type that satisfies the precondition, then the corresponding
response will be given. The overall ECS postcondition is denoted by a conjunc-
tion of the postconditions for distinct requests. Because of space limitations,
we display only the postconditions for search by author and keywords. The

160 11 Applications of WSMO

only shared variable in the capability definition is ?request. This is required
in order to capture which postcondition will be achieved when a specific input
is provided to the service.

capability amazonWSCapability
sharedVariables {?request}
precondition

definedBy
//A search by author, keywords, title , minPrice or maxPrice
?request memberOf am#itemSearchRequest or
[...] .

postcondition
definedBy

// The result for a search request by author is a container of products
// such that all items in the container are amazonBooks have the requested author:
(?request [

author hasValue ?author
] memberOf am#searchBooks implies
exists ?container

(?container memberOf am#itemContainer and
forall ?item
(?container [

items hasValue ?item
] memberOf am#itemContainer implies
?item[

author hasValue ?author
] memberOf bk#amazonBook

)
)) and

// The result for a search request by keyword is a container of products
// such that all items in the container are amazonBooks have the requested keyword:
(?request [

keywords hasValue ?keyword
] memberOf am#searchBooks implies
exists ?container

(?container memberOf am#itemContainer and
forall ?item
(?container [

items hasValue ?item
] implies
?item[

keywords hasValue ?keyword
] memberOf bk#amazonBook

)
)) and [...] .

Listing 11.1. Capability of the Amazon e-commerce service

The second important part of the WSMO description of the Amazon ECS
that we present here is the choreography interface. This defines the behavioral
interface for consumption of the service by a client. In other words, it defines
the communication structure supported by the Web service for consuming
its functionality. As explained above, WSMO choreography interface defini-
tions consist of a state signature that defines the ontological terminology and
its usage for communication, and of guarded transitions that specify the dy-
namic aspects of the service’s communication behavior. Listing 11.2 shows a
selection from the ECS choreography interface. This corresponds to the prod-
uct search functionalities that the above listing specified the postcondition for.

11.1 E-Commerce 161

interface amazonWSInterface
choreography

stateSignature
importsOntology ”http://www.wsmo.org/ontologies/amazon/amazonOntology”
in

concept am#itemSearchRequest withGrounding
”http://webservices .amazon.com/AWSECommerceService/2005−03−23#

wsdl. interfaceMessageReference (AWSECommerceServicePortType/ItemSearch/In)
”

out
concept am#itemContainer withGrounding

”http://webservices .amazon.com/AWSECommerceService/2005−03−23#
wsdl. interfaceMessageReference (AWSECommerceServicePortType/ItemSearch/

Out)”
transitionRules

// a search request for an item will trigger a response
if (?ItemSearchRequest memberOf am#itemSearchRequest) then

add(# memberOf am#itemSearchResponse)
endIf

Listing 11.2. Choreography interface for Amazon e-commerce service

A developer who is considering utilizing the Amazon ECS Web service
within his own e-commerce application initially obtains two aspects from this
WSMO description. First, a precise description of what the Web service does
(the information about the capability is not provided in WSDL, but merely
in natural language in the accompanying explanations on the Web page),
and secondly a concise description of how to consume the functionalities of
ECS described by the choreography interface. If the developer can provide an
appropriate request, then automatic use of ECS instead of manual integration
is possible. Furthermore, if the developer chooses to define a WSMO goal for
the e-commerce functionalities, then he/she is not limited to the Amazon
ECS but can also use other e-commerce Web services that provide similar
functionalities.

11.1.2 B2B – Enterprise Application Integration

B2B commerce is concerned with enabling seamless automated information
interchange between enterprises. A significant problem for automated infor-
mation interchange and processing within and between enterprises is the use
of different terminologies, representation formats, and transfer protocols as
well as potentially incompatible business processes, by entities that ought to
interact. Starting from the Electronic Data Interface (EDI) and processing
through more recent developments such as RosettaNet and ebXML, more
than 200 standards, along with technical platforms, have been developed for
specific purposes in B2B commerce. These developments must be integrated
in order to facilitate seamless B2B commerce. This is the aim and challenge of
enterprise application integration (EAI) technologies, where e 9 out of every
e 10 that is invested in IT technologies are spent [22].

Web services have been invented as a novel EAI technology for tackling
the integration problem. Actually, the initial motivation for Web services was

162 11 Applications of WSMO

to develop a next-generation EAI technology by providing seamless access in-
terfaces to computational facilities. Along with means for ad-hoc usage and
combination and support for web-based information exchange, they shall serve
as the basis for service-oriented architectures over the Web. This means that
enterprises publish the access points and public processes of their function-
alities as Web services, which are then invocable over the Web, possibly as
composed or complex functionalities. However, as discussed in detail earlier,
the initial Web Service Technology Stack allows the setting up of Web ser-
vices for Web-based access to a computational facility with a standardized
usage interface (i.e. the WSDL description). However, this does not address
the problem of handling heterogeneities that hamper information interchange
and automated interaction within and between businesses.

In order to illustrate how Semantic Web services and, especially, the
WSMO framework and technologies can be used to provide adequate solutions
to this problem, we shall describe an EAI problem in the telecommunications
industry as presented in [34]. To stay competitive in the future market, many
Internet service providers (ISPs) are extending their businesses by the whole-
saling of mobile and landline telephone services and unbundled data lines.
Least Cost Supply Management (LCSM) is a methodology that offers the
possibility to select the best supplier in terms of price and quality for specific
product bundles; therefore technologies for easy and flexible integration of
suppliers that offer these services are needed.

Let uss consider a virtual Internet service providers (VISP) that provides
ISP bundles to customers on the basis of LCSM by detecting and aggregating
offers from other providers. As in the real world, the parties involved might
use different, incompatible systems. Therefore, a WSMO-enabled VISP plat-
form mediates communication between the technical systems of the VISP, the
suppliers, and the internal systems of the ISPs. Figure 11.1 gives an overview
of the scenario for a customer requesting a broadband Internet package in the
form of a flow-chart with the following central processing steps:1

1. A customer buys a broadband Internet package from the VISP.
2. This package is recognized as a VISP product by the VISP enterprise

resource planing (ERP) system.

1 Some names and abbreviations used in Fig. 11.1 are the following:

• Apache. An open source Web server, see: www.apache.org.
• SAP. An enterprise resource planing (ERP) system provided by SAP, see: http:

//www.sap.com/solutions.
• CCBS. abbreviation for “Call Completion on Busy Subscriber”, a telecommuni-

cation management technology.
• Biztalk. an application integration platform provided by Microsoft, see: www.

biztalk.org.
• Websphere. an application server provided by IBM, see www.ibm.com/software/

websphere.

11.1 E-Commerce 163

3. The VISP sends an order to its ISP (e.g. an ebXML document).
4. An adapter transforms this message into a WSMO goal.
5. The VISP platform selects an appropriate supplier using the LCSM

methodology and invokes the respective Web services.
6. After successful account installation, the ISP creates an account for the

customer along with ordering information.
7. The ISP monitors the whole process; when the order process is finished

the VISP platform sends a confirmation back to the VISP.
8. The VISP ERP system processes the order.
9. The VISP sends a confirmation to the customer.

Fig. 11.1. Overview of a VISP

All of the parties involved in this scenario are, most likely, in different
locations, and therefore all information interchange and communication takes
place over the Web. The Web services of the ISP and the suppliers carry
WSMO descriptions similar to that of the Amazon ECS Web services dis-
cussed earlier. The parties involved may very well use different ontologies
within their service descriptions or might have incompatible business pro-
cesses. However, on the basis of semantic descriptions, the VISP platform is

164 11 Applications of WSMO

able to resolve a request as in the scenario outlined by applying semantically
enabled technologies for Web service usage.

For the purpose of this example, we shall omit the provision of the WSMO
element definitions but shall discuss how the VISP platform achieves its func-
tionality by applying the techniques for discovery, composition, mediation,
and execution described in detail in Chapter 9. For discovery, the ISP aims
to detect the cheapest offer among all suppliers that satisfies the customer’s
request. Therefore, it creates a WSMO goal containing an axiom stating that
the product to be delivered must have the lowest price among the applicable
products. This allows to run a discovery engine that finds the Web service
of the supplier that offers the requested product at the cheapest rate. More-
over, the choreography interface descriptions, along with a grounding to an
executable Web service communication technology, allow the ISP to automat-
ically invoke and execute the suppliers’ Web services.

If no supplier can provide the requested product as a whole but it can
be provided as an aggregate by combining the offers from several suppliers,
the VISP platform can compose the respective Web services and provide the
result as a new, virtually created product bundle to the customer. Imagine
that providing such a composed product bundle requires the Web services
of provider X and provider Y. However, several types of heterogeneity that
hamper the necessary interaction of the Web services might occur: X might
use UBL2 for describing its Web services, while Y might use WSML; X might
define the customer name as a string, while Y might define it as consisting
of a given name, middle initial, and surname. Furthermore, it might occur
that the composition of X and Y defines an interleaved process, meaning that
X requires some input from the ISP that can only be given after the ISP
has received a certain output from Y. Therefore, a WW mediator M can be
utilized that provides the mediation facilities for handling these mismatches.
In this case, M would incorporate two OO mediators – one for translating
between UBL and WSML, and one that resolves terminology mismatches
between the ontologies – and would utilize a process mediator that allows to
resolve the communication mismatches between X and Y.

In conclusion, we observe that Semantic Web services allow one to handle
the EAI problem by lifting information and process descriptions to a seman-
tic level. A specific characteristic of WSMO is that its four top-level concepts
correspond to the core elements of a Semantic Web service based on an EAI
platform and define them in a concise and unambiguous manner. Ontologies
provide the semantically formalized terminology, WSMO Web services se-
mantically annotate and execute computational functionalities, WSMO goals
precisely specify client objectives in a machine-processable way, and WSMO
mediators provide an infrastructure and techniques for handling and resolving
potential heterogeneities that would prevent successful interaction of entities.

2 OASIS Universal Business Language, see http://docs.oasis-open.org/ubl/

prd-UBL-2.0.

11.2 E-Government 165

11.2 E-Government

In comparison with e-commerce, the area of e-government is a new ap-
plication area for Web-based IT solutions; it is concerned with providing
an advanced public infrastructure and governmental services on the Inter-
net [17]. Commencing with Web portals for countries, cities or aspects of
public interest, e-government has recently gained official interest. Remark-
able effort have been initiated by the United States government (see http:
//www.whitehouse.gov/omb/egov). Aiming at a novel level of citizen support
via a completely Web-based infrastructure, including registration of citizens
and businesses, handling of immigration and visas, public health-care, and
other services related public administration; [80] gives an overview of best
practice and existing efforts in e-government.

Although the problem of widely used, incompatible standards is not as
prevalent as in B2B commerce, legacy data and systems do exist and should
be utilized in novel e-government solutions. Hence, technology developers are
applying widely the Semantic Web and Web service technologies in order to
prevent problems arising this. The first aspect is concerned with the use of
ontologies as the data model for allowing advanced processing, maintenance,
and usage of information within e-government resources, by applying ontol-
ogy technologies developed for the Semantic Web [63]. The second aspect is
concerned with the use of Web services as a basic building block for dynamic,
more complex e-government services [120]. Naturally, such techniques lack
support for automated Web service usage as is needed for dynamic access,
composition, and execution of computational facilities over the Web.

In consequence, [57] has proposed an architecture for e-government appli-
cations that consists of four layers, as displayed in Fig. 11.2. The lowest layer
comprises systems and information resources that provide general-purpose
data or services useful for e-government. The second layer provides standard
access and usage interfaces (Web services) to the first layer. The third layer
provides the semantic annotation for the second layer in order to allow auto-
mated handling and execution of e-government services, and the fourth layer
denotes actual e-government applications that work on the third-layer tech-
nologies. Evidently, the semantically enabled technologies for discovery, com-
position, mediation, and execution of Web services presented in this book are
allocated at the semantics layer of this architecture.

A prototype e-government application that realizes this architecture pro-
vides an emergency planning and notification system for Essex, a county lo-
cated to the northeast of London in the UK. The first-layer resources use
geographical information systems (GIS) that are provided as Web services
(second layer) and have a WSMO Web service description (third layer). The
application (fourth layer) utilizes these to provide a decision support system
that assists emergency authorities such as emergency planners, the police,
the ambulance service, and the army in gathering information related to any
particular type of event, quicker and more accurately.

166 11 Applications of WSMO

Fig. 11.2. Semantic Web services in e-government

As is explicitly denoted in Fig. 11.2, Semantic Web services provide the
semantic layer for automated Web service usage. Similar to the usage within
B2B commerce applications, the benefit of the WSMO framework is that it
not only provides a means for semantically describing Web services, but also
defines the other core elements of e-government applications based on Seman-
tic Web services. While WSMO mediators allow the handling of potential
heterogeneities that hamper interoperability, the notion of WSMO goals al-
lows one to specify the end user requirements in an explicit, unambiguous,
and machine-readable manner. For instance, the Stansted Airport flight man-
agement can define a goal of being notified when a storm is arriving that
might impair landing conditions in the airport; such essential information can
be seamlessly integrated into the flight management system.

11.3 E-Banking

Yet another application area for Semantic Web services and WSMO is e-
banking, i.e. Web-based IT solutions for processing, handling, and monitoring
financial transactions. The financial sector has always been an early adapter
to innovative technologies in order to manage the vast amount of informa-
tion that needs to be dealt with on a daily basis. Today’s financial business
use IT to a very high extent, starting from customer management in private
customer bank branches, through credit card business and online banking, to
professional day-trading technology such as Bloomberg Professional, a system
used by investment brokers all over the world.

Because of the monetary value of the information interchanged, security
of data and transactions and system stability are the primary and the critical
factors for success of IT solutions for the banking business. However, [25]
observes certain shortcomings of the existing technologies used in the financial
sector that can be overcome, or at the very least, addressed, with semantic
technology:

11.3 E-Banking 167

• Intra-institutional. Banks and other financial institutions usually consist
of several interrelated departments that need to interact in order to pro-
cess daily requests. Each department usually has its own structure and
processing procedure, which means heterogeneities are likely to arise and
hamper successful and effective interaction. Here, semantic technologies
can be used for advanced information management based on ontologies.
Furthermore, if each department were to publish its processing function-
ality as a Web service, service-oriented architectures for managing the
processing procedure of the overall institution could be envisioned.

• Inter-institutional. Financial institutions usually need to cooperate in or-
der to provide their facilities. For instance, money transfers between dif-
ferent banks and exchanging information about the financial standing of
customers, are regular and important procedures in the banking business.
As most interacting institutions will be in different locations, and since
heterogeneities in terminology, data formats, and business processes are
more or less inevitable, a service-oriented architecture based on Semantic
Web service technology appears to be a suitable means to provide adequate
support.

• Customer support. A critical factor for the success and marketability of
banks is sophisticated, high-quality support for their customers – be they
private persons, businesses, or other financial institutions. Here, semantic
technologies can be applied in order to develop advanced customer support
technologies.

The first two aspects relate directly to B2B integration as previously dis-
cussed in Section 11.1.2. In the following, we illustrate the third aspect where
banks can provide new, interesting applications for advanced customer sup-
port enabled by Semantic Web services.

Most banks are organized as commercial businesses. Hence, efficiency with
respect to resources and costs, and nondisclosure of information and pro-
cessing procedures are inevitable requirements for IT. Web services can be
recognized as an appropriate technology, as they merely require to define the
public process for consuming a functionality while internal aspects of how this
functionality is achieved can be kept unpublished. Therefore, we can assume
that convincing banks and other financial-service providers that publishing
their functionality as a Web service is possible, as it does not contradict their
primary interests as commercial businesses.

Having semantic descriptions of the functionalities provided allows the
development of new, interesting applications that provide added value to cus-
tomers. The following describes two of such applications that use WSMO
and are currently under development within the DIP project (see dip.
semanticweb.org):

• Mortgage comparison. A major area of financial business is the provision,
selling, and management of mortgages. This is a compelling business: the
provider (i.e. the bank) will earn money by selling a mortgage contract,

168 11 Applications of WSMO

and the client is naturally interested in the cheapest offer that suites his
needs. Usually, clients consider several offers and compare these in detail
with respect to the monetary amount in question. If several banks pro-
vide their mortgage offers via semantically described Web services, we can
easily imagine an application that compares the offers and automatically
selects the one which is most suitable for the customer’s needs. Here, the
WSMO framework assists in creating client requests in the form of for-
mally specified goals, and WSMO mediators allow possible mismatches on
the data and process level to be handled.

• Stock market client. Similarly to the business of mortgages, stock mar-
ket support for private and business customers is an important area of
operation of financial institutions. Stock market brokers are interested in
technical solutions that automate customer support to the highest extent
possible in order process as many transactions as possible. Some brokers
allow trading in specific stock options only; therefore, the brokerage avail-
able differs slightly between providers, as do other conditions. As in the
first scenario, we can imagine a end-customer client that observes the stock
market and finds the most appropriate provider for handling a trade re-
quest on the basis of Semantic Web service descriptions provided by stock
market brokers.

11.4 Summary

This chapter has examined examples of applications in order to illustrate and
demonstrate the benefits attainable with Semantic Web service technology. We
observe that the benefits for these applications provided by new technologies
are similar in many application areas. In a nutshell, the essential ingredients
are as follows:

1. Ontologies provide formalized terminology and domain knowledge defini-
tions, which can serve as the basis for advanced, automated information
organization, management, and processing.

2. Web services provide a means for making computational facilities acces-
sible and usable over the Internet via standardized interfaces.

3. Semantic Web services provide semantically enabled technologies for auto-
mated Web service discovery, and composition, and execution of semantic
annotation of Web services.

4. The WSMO Framework allows Semantic Web services to be realized and
and incorporates two additional top-level notions that denote core com-
ponents of Web-service-based systems: Goals for semantically specifying
client requests, and Mediators for handling potential mismatches that
would hamper successful interaction.

12

Conclusion and Outlook

In the course of this book we have illustrated how to enable Semantic Web
services by means of the Web Service Modeling Ontology approach. WSMO,
together with its formal language WSML and the reference implementation
WSMX, is a comprehensive framework that integrates two complementary
and revolutionary technical advances, Web services and the Semantic Web,
into a single computing architecture.

We shall briefly recapitulate the content of this book and outline the vision
of Semantic Web services. In this final chapter, we give the reader a concise
overview of the ongoing research in the area of Semantic Web services and of
the corresponding efforts of international standardization bodies. The story
does not end here, but with these final remarks we want to give the reader an
opportunity to keep up effectively with the trends and developments within
the Semantic Web and Semantic Web services communities.

Finally, we conclude the book with a critical outlook on technologies that
offer alternatieves to or are complementary to Semantic Web services.

12.1 Semantic Web Services Using WSMO

While the overall intuition behind Web services and service-oriented archi-
tectures is widely acknowledged for its potential to revolutionize the world of
computing, success depends on resolving three fundamental challenges that
SOAs alone do not address, namely, the automation of searching, integration
and mediation. The WSMO framework addresses the semantic gap which
hampers this automation by providing the following building blocks: a frame-
work for semantic annotation of services, means for grounding semantic speci-
fications in each component of the SOA framework, and semantically enabled
solutions for the components of the overall framework.

In Part II, we outlined the vision of semantically enabled services contained
in our understanding of the Web Service Modeling Ontology. We outlined the

170 12 Conclusion and Outlook

concepts, language and usage tasks of a semantically enabled service architec-
ture, aimed towards a future of dynamic collaboration of distributed services.

We face the fact that a fully fledged Semantic Web service framework will
still take some time to be completely realized in terms of standards, products,
and (what we currently call) production systems. So far – as we have outlined
in Part III – there already exist several proof-of-concept applications and tools;
however, these are still the product of research efforts and of specific needs
in niche markets. Nevertheless, these efforts demonstrate in the small the
real potential of Semantic Web services. Adoption in terms of standardization
efforts will hopefully be the next step, and the first step in the direction of
widespread exploitation.

12.1.1 Future Work on WSMO/L/X

The Web Service Modeling Ontology in its current state formalizes all the
main principles that underlie our work and is now very mature. That said,
we do not expect fundamental changes to the conceptual model anymore and
believe that it is in a suitable shape to tackle all of the main problems that
we want to address in such a framework. The effort in terms of the concrete
language of WSML and in terms of tools is still more dynamic. Future work on
WSML will include the application of the language to various use cases and the
improvement of WSML tools, such as editors and reasoners (see Chapter 10).
From a more theoretical point of view, considering language development, the
semantics of WSML-Full has not yet been defined completely; we are currently
investigating several nonmonotonic logics, such as autoepistemic and default
logic and their combinability with purely classical logics in order to close
this gap. There are approaches which combine expressive description logics
with nonmonotonic logic programming without requiring the expressiveness
of WSML-Full (e.g. [35, 118]). Incorporating such approaches into WSML is
a matter of ongoing research. We are also currently working on defining the
operational semantics for Web service capabilities and interface descriptions.
Such an operational semantics is necessary for the automation of several Web-
service-related tasks, such as discovery (see Section 9.2) and composition (see
Section 9.4).

12.2 Standardization Efforts

In Part I of this book we discussed standard specifications that provide the
basis for Semantic Web services. We made the criticism that until now these
standards have not addressed the semantic gap between heterogenous entities
interacting in a service-oriented architecture. To this end, it can be expected
that a whole set of possible competing proposals for standards will soon be
endorsed by several standardization bodies. As outlined throughout this book,

12.2 Standardization Efforts 171

different aspects of Semantic Web service technologies present themselves at
different levels of maturity at present.

The results relating to standards for ontology languages are quite mature,
although some aspects, such as a Web enabled rule extension, have not yet
been finalized.

The work on the overall framework for Semantic Web services is not as
mature yet. In summer 2005, the W3C organized a workshop on Frameworks
for Semantics in Web Services1 to clarify the various views of the community
and explore current chances for standardization. Over 80 participants from
industry and academia presented their proposals, but despite many conceptual
overlaps, one intention of the workshop was not achieved: The community was
still far from agreement on the details of the technologies to be deployed, and
therefore not ready for a rapid move towards standardization. Still, the strong
industrial participation and the active contribution from global players showed
once more that the problems that Semantic Web services are trying to solve
are key aspects of today’s IT business.

Although activities towards standardizing an overall framework for Se-
mantic Web services have been stalled by the W3C for the moment, stan-
dardization organizations such as the Organization for the Advancement of
Structured Information Standards (OASIS)2 and also W3C itself have in the
meantime established several working groups or technical committees to de-
velop and standardize particular aspects of Semantic Web service technologies,
as presented in this book.

For instance, most of the ongoing architectural effort on the Web Service
Execution Environment (WSMX) has in the meantime moved to the Seman-
tic Execution Environment Technical Committee (SEE TC) of OASIS. For the
individual WSMX components outlined in this book, there is currently major
progress and we have probably not been able to cover all the latest develop-
ments. Still, we can predict theat we shall be able to choose between several
alternative industrial strength implementations and strategies for every task
and component within a few years.

While the SEE TC of OASIS focuses on the development of a reference
execution environment for a semantically enhanced service-oriented architec-
ture, several other groups are working on other important related aspects.

Within OASIS itself, various committees are working mainly on architec-
ture related issues:

The OASIS SOA Reference Model (RM) Technical Committee is chartered
to develop a reference model for serviceoriented architectures. The OASIS
Electronic Business Service-Oriented Architecture (ebSOA) Technical Com-
mittee focuses on continuing work on the ebXML technical architecture to
bring it into a more up-to-date form that takes into account subsequent re-

1 http://www.w3.org/2005/01/ws-swsf-cfp.html.
2 http://www.oasis-open.org.

172 12 Conclusion and Outlook

leases of the ebXML3 specifications and other work on Web services and
service-oriented architectures. The OASIS SOA Adoption Blueprints Tech-
nical Committee has recognized the shortage of clear, illustrative examples
of working implementations of SOAs based on real-world needs and require-
ments that can be used as references for best practice and is working in this
direction. Finally, the OASIS Web Services Resource Framework (WSRF)
Technical Committee is defining a generic, open framework for modeling and
accessing stateful resources using Web services. This includes mechanisms to
describe views of the state of a Web service (or any other Web resource),
to support management of this state through properties associated with the
Web service, and to describe how these mechanisms are extensible to groups
of Web services.

The W3C is not addressing issues specifically related to service-oriented
architectures, but the results of several W3C working groups are crucial to
the realization of Semantic Web services in that they focus on specific aspects
on Web services and the Semantic Web.

The Semantic Annotations for WSDL Working Group aims to add min-
imal semantic extensions to WSDL. WSDL itself only specifies a way to de-
scribe the abstract functionalities of a service and concretely how and where
to invoke it. The WSDL 2.0 specification, however, does not include seman-
tics in service descriptions, and thus two services can have similar descriptions
but totally different meanings or, vice versa, similar meanings with completely
different descriptions. The objective of the Semantic Annotations for WSDL
Working Group is to develop a mechanism to enable semantic annotation of
WSDL descriptions. This mechanism will take advantage of the WSDL 2.0
extension mechanisms to build simple, generic support for semantics in Web
services.

The Rule Interchange Format Working Group is chartered to specify a
format for rules, such that they can be used across diverse systems. It aims to
create a common format for static and dynamic business rules. This format
(or language) will function as an interlingua into which established and new
rule languages can be mapped, allowing rules written for one application to
be published, shared, and reused in other applications and other rule engines.
This is essentially along the same lines as the WSML language. One motivation
for creating WSML was that at the time of starting the effort there was no
rule language that fullfilled our requirements of (1) a clear layering, and (2)
declarative semantics based on well established and proven formalism that (3)
is compliant with Web technologies such as URIs, XML, and RDF.

Summarizing, while SOAs are widely accepted as the next generation of
computing to which most software vendors are committed, standards are still
evolving. From 2000 to 2005, SOA standard proposals grew enormously in
number and complexity, with few reference technologies. Some standards al-
ready exist, while others are scheduled for development and release up to 2012

3 http://www.ebxml.org.

12.3 Industrial Collaboration 173

within OASIS and W3C. A review of the hundreds of standards related to Web
services and SOAs is beyond the scope of this final chapter. However, we have
noted the most important ones. At the end of 2005, Web service and SOA
standards efforts were being commenced, as vendors recognize that without
reasonable, effective, and agreed standards, SOA technology will not progress
and customers will neither purchase nor deploy SOA solutions.

12.3 Industrial Collaboration

Even when a so-called standard is in place, this is only a prerequisite for the
success of a technology, and not a guarantee by any means. The eventual
criterion for success that Semantic Web service technology has to face will
be industrial adoption. While scalability and precision are the foci of current
industrial efforts related to Web services and service-oriented architectures,
the more fundamental goal of enabling Semantic Web services is at the core
of our research interests, as outlined in this book.

The challenge for the research and industrial communities over the next
few years will be to collaboratively realize the concepts described in this book.
This challenge involves two ongoing and complementary paradigm shifts in
computing: (1) the movement to service-orientation, and (2) the use of se-
mantic technologies and ontologies in industrial-scale infrastructures and ap-
plications. Achieving such a goal will require collaboration not only within
the research community, but also among the global players in industry. To
achieve what we consider true realization – defined not in terms of purely
research prototypes but in terms of industrial-scale production applications –
collaboration between the research and industrial communities is essential.

This will require research to understand the state and nature of the rele-
vant industrial problems, products, and solutions. It will require industry to
understand the relevant challenges and opportunities to which research can
contribute. It will require researchers to collaborate with industry so that re-
search results can be achieved and then integrated into industrial solutions.
Among other things, work has to be done on industrial-standard ontologies
that annotate the most common business concepts and standards. Examples
of such common concepts are ordering and billing in various domains such
as manufacturing, financial services, healthcare, inventory, and tourism. The
hope is that as soon as we have reached a critical mass of semantic annotations,
the effort required to adapt concepts to a new domain or specific business will
be significantly reduced, and benefits will outweigh the cost of creating the
necessary descriptions for Semantic Web services. Low entry barriers and high
benefits are a key prerequisite for any new technology.

This challenge of collaboration has been recognized in the European Union.
The European Commission is funding several large integrated projects and
strategic research projects that aim to facilitate development in precisely this
direction.

174 12 Conclusion and Outlook

12.4 Alternatives to Classical Web Services

Even if we have all appropriate semantic annotations in place and assume
that these are widely provided and used, there still remains an open question:
Are current Web service technologies the right means to achieve “Semantic
Web services”? Or, in other words how much “Web” is there in Web services?
Current technologies designed around WSDL and SOAP are not necessarily
the only starting point towards semantically enabled Web services [79].

A core paradigm of the Web is information exchange via persistent pub-
lication, i.e. one party publishes a piece of information on the Web, and any
other party who knows the location of the resource can retrieve and process the
information at any later point in time, without the need for synchronization
with the original publisher. This functionality has significantly contributed to
the scalability of the Web, since it reduced the amount of interaction between
the sender and the recipient.

Current Web service technologies ignore this particularity to a large extent,
the “Web” components used are mainly the communication layer (HTTP)
and the message format (XML), and otherwise, Web service technology per
se is a tightly coupled message exchange. This is similar to the situation in
the pre-Web age, where one had to send an email message to a scientific
colleague, asking for a specific paper or piece of information. In the current
Web, used as an infrastructure for humans, this pattern of communication has
been widely replaced by persistent publication and asynchronous retrieval.
The shift from information dissemination based on message exchange has not
only made the Web scale tremendously, it has also sped up the dissemination
process. When we compare Web services with this important principle of the
Web, it becomes evident that Web services per se do not follow this core idea.
The idea of publishing data and accessing it asynchronously is lacking. Instead
of publishing the information on the basis of a global, persistent URI, Web
services establish (1) stateful conversations based on (2) the hidden content
of messages.

The negative effect of such distributed applications that communicate via
message exchange is that they require a strong coupling in terms of reference
and time. This means that traditional Web services require that the sender
and receiver of data (1) maintain a connection at the same time, (2) agree
on the data format, and (3) know each other and share a common repre-
sentation. Therefore, the communication has to be directed to a particular
service and is synchronous as long as neither party implements asynchronous
communication.

The above line of argument is in alignment with the worries expressed by
the REST4 community [42, 136]. The two major criticisms of Web services
are about the improper usage of URIs and the violation of the stateless ar-

4 REST stands for Representational State Transfer, a term coined by Roy Fielding
in his Ph.D. dissertation [42].

12.4 Alternatives to Classical Web Services 175

chitecture of the Web. It is one of the basic design principles of the Web and
the REST architecture not to provide stateful protocols and resources.

In practice, this means that when SOAP messages are sent and received,
the content of the information is hidden in the body and not addressed as an
explicit Web resource with its own URI. Referring to the content transmitted
via an explicit URI in an HTTP request would allow the content of a message
to be treated like any other Web resource.

A possible approach to address these problems might be to look for alter-
native middleware paradigms to the current Web service technologies. As it
turns out, Tuple Space computing [47] which can be seen as a paradigm for
exchanging data between processes that is very similar to the paradigms of
the Web, shows many of the desired characteristics.

Tuple Spaces have been introduced in parallel-programming languages
such as Linda to implement communication between parallel processes [47].
Instead of sending messages forward and backward, a simple communication
means is provided. Processes can write, delete, and read tuples from a persis-
tent space. Tuple Space computing has very strong advantages; it decouples
three orthogonal dimensions involved in information exchange: reference, time,
and space.

This strong decoupling of all three relevant dimensions has obvious de-
sign advantages for defining reusable, distributed, heterogeneous, and quickly
changing communicating applications. Moreover, a service paradigm based
on Tuple Space computing also revisits the Web paradigm: information is
persistently written to a globally accessible space where other processes can
smoothly access it without starting a cascade of message exchanges.

In fact the Web and Tuple Spaces have many things in common. They are
both scalable information spaces for persistent publication and information
dissemination that (in principle) do not rely on replication. However, tradi-
tional Tuple Spaces provide a flat and simple data model that does not provide
any nesting or linking of data. Hence, tuples with the same number of fields
and the same field order but different semantics cannot be distinguished.

In order to make Tuple Spaces usable for Semantic Web services, it would
thus be an appealing idea to move Tuple Space computing in the direction
of the Semantic Web, by adopting the Semantic Web data model (RDF) and
allowing semantics-aware matching rules, which we could call (borrowing from
RDF triples as the underlying data model) “Triple Spaces”.

Note that these ideas do not make Semantic Web services based on tradi-
tional Web services obsolete. More sophisticated technologies are still needed
in the Semantic Web. Tuple spaces can help to decouple communication; how-
ever, they do not provide answers to data and information heterogeneities up
front. That is still a task for the Semantic Web, as it provides standards to
represent machine-processable semantics of data.

We emphasize also that Triple Space computing is more a complement
to Semantic Web services based on “traditional” Web service technologies
than something aimed at replacement of these technologies. Nevertheless, we

176 12 Conclusion and Outlook

wanted to point out this alternative explicitly, in order to give a complete pic-
ture of ongoing research efforts towards making the vision of Semantic Web
services come true. Research efforts towards using Triple Space computing
to provide an alternative Semantic Web middleware are currently being un-
dertaken in several ongoing research projects.5 Preliminary ideas and results
related to Triple Space computing are available, for instance, in [23, 39, 79].

It is our goal that the Web Service Modeling Ontology will provide the
foundations that will eventually cater for groundings to the best-suited and
most widely adopted service technologies, such that WSMO will be able to
provide the semantic descriptions in any of these technologies, be they “pure”
Web services, Triple Spaces, or another emerging technology.

5 TripCom – Triple Space Communication: http://www.tripcom.org,
TSC – Triple Space Computing: http://tsc.deri.at.

References

1. R. Akkiraju et al. Web Service Semantics: WSDL-S. W3C Member Sub-
mission, 7 November 2005. Available from http://www.w3.org/Submission/

WSDL-S/.
2. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services. Springer,

Berlin/Heidelberg, 2004.
3. S. Anderson et al. Web Services Trust Language (WS-Trust). Technical report,

Actional, BEA, Computer Associates, IBM, Layer 7, Microsoft, Oblix, Open
Network Ping Identity, Reactivity, RSA Security Verisign, February 2005.

4. T. Andrews et al. Business Process Execution Language for Web Services,
version 1.1. Technical report, IBM, May 2003. http://www-106.ibm.com/

developerworks/webservices/library/ws-bpel/.
5. F. Baader et al., editors. The Description Logic Handbook. Cambridge Uni-

versity Press, 2003.
6. Z. Baida, J. Gordijn, B. Omelayenko, and H. Akkermans. A shared service

terminology for online service provisioning. In ICEC ’04: Proceedings of the
6th International Conference on Electronic commerce, pages 1–10, Delft, The
Netherlands, 2004.

7. S. Bajaj et al. Web Services Policy Attachment (WS-PolicyAttachment). Tech-
nical report, BEA, IBM, Microsoft, SAP, Sonic Software, Verisign, September
2004.

8. S. Bajaj et al. Web Services Policy Framework (WS-Policy). Technical report,
BEA, IBM, Microsoft, SAP, Sonic Software, Verisign, September 2004.

9. S. Battle et al. Semantic Web Services Framework (SWSF).
10. T. Bellwood et al. UDDI version 3.0, July 2002. Available from http://uddi.

org/pubs/uddi-v3.00-published-20020719.htm.
11. B. Benatallah, M.-S. Hacid, C. Rey, and F. Toumani. Request rewriting-based

web service discovery. In D. Fensel, K. Sycara, and J. Mylopoulos, editors, The
Semantic Web - ISWC 2003, Second International Semantic Web Conference,
Sanibel Island, FL, USA, October 20-23, 2003, Proceedings, volume 2870 of
LNCS, pages 242–257. Springer, Berlin/Heidelberg, 2003.

12. T. Berners-Lee and M. Fischetti. Weaving the Web. Harper, San Franscisco,
1999.

13. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific
American, 284(5):34–43, May 2001.

178 References

14. S. Bhiri et al. An orchestration and business process ontology. DIP Deliverable
D3.4, January 2005.

15. A. D. Birell and B. J. Nelson. Implementing remote procedure calls. ACM
Transactions on Computer Systems, 1(2):39–59, 1984.

16. P. V. Biron and A. Malhotra, editors. XML Schema Part 2: Datatypes. W3C
Recommendation, 28 October 2004. Available from http://www.w3.org/TR/

xmlschema-2/.
17. M. Boehlen, J. Gamper, W. Polasek, and M. A. Wimmer. E-Government:

Towards Electronic Democracy. Springer, Berlin/Heidelberg, 2005.
18. A. Borgida et al. Classic: A structural data model for objects. In Proceedings

of the 1989 ACM SIGMOD International Conference on Management of Data,
pages 59–67, 1989.

19. R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE knowledge
representation system. Cognitive Science, 9(2):171–216, 1985.

20. D. Brickley and R. V. Guha, editors. RDF Vocabulary Description Language
1.0: RDF Schema. W3C Recommendation, 10 February 2004. Available from
http://www.w3.org/TR/rdf-schema/.

21. D. Brickley and L. Miller. FOAF Vocabulary Specification. http://xmlns.

com/foaf/0.1/, 2004.
22. C. Bussler. B2B Integration: Concepts and Architecture. Springer, Berlin/Hei-

delberg, 2003.
23. C. Bussler. A minimal triple space computing architecture. In Proceedings of

the 2nd WSMO Implementation Workshop (WIW), Innsbruck, Austria, 2005.
24. L. Cabral and J. Domingue. Mediation of semantic web services in IRS-III. In

Proc. Workshop on Mediation in Semantic Web Services (MEDIATE 2005),
in conjunction with ICSOC 2005, 2005.

25. P. Castells, B. Foncillas, R. Lara, M. Rico, and J. L. Alonso. Semantic Web
technologies for economic and financial information management. In Proceed-
ings of the First European Semantic Web Symposium, ESWS 2004, Heraklion,
Crete, Greece, 2004.

26. W. Chen, M. Kifer, and D. S. Warren. HiLog: A foundation for higher-order
logic programming. Journal of Logic Programming, 15(3):187–230, 1993.

27. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, editors. Web
Services Description Language (WSDL) 1.1. March 2001. http://www.w3.

org/TR/wsdl.
28. E. Cimpian and A. Mocan. WSMX Process Mediation Based on Choreogra-

phies. In Proceedings of the 1st International Workshop on Web Service Chore-
ography and Orchestration for Business Process Management, at BPM 2005,
Nancy, France, 2005.

29. W. J. Clancey. Heuristic classification. Artificial Intelligence, 27(3):289–350,
1985.

30. J. de Bruijn, editor. The Web Service Modeling Language (WSML). WSML
Final Draft, 5 October 2005. Available from http://www.wsmo.org/TR/d16/

d16.1/v0.21/.
31. J. de Bruijn, A. Polleres, R. Lara, and D. Fensel. OWL DL vs. OWL Flight:

Conceptual modeling and reasoning on the Semantic Web. In Proceedings of the
14th International World Wide Web Conference (WWW2005), Chiba, Japan,
2005.

32. M. Dean and G. Schreiber, editors. OWL Web Ontology Language Reference.

References 179

33. J. Domingue, L. Cabral, F. Hakimpour, D. Sell, and E. Motta. IRS-III: A plat-
form and infrastructure for creating WSMO-based Semantic Web services. In
Proceedings of the Workshop on WSMO Implementations (WIW 2004), Frank-
furt, Germany, 2004.

34. A. Duke, M. Richardson, S. Watkins, and M. Roberts. Towards B2B integra-
tion in telecommunications with Semantic Web services. In Proceedings of the
2nd European Semantic Web Conference, ESWC 2005, Heraklion, Crete, pages
710–724, 2005.

35. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer
set programming with description logics for the semantic web. In D. Dubois,
C. Welty, and M.-A. Williams, editors, Principles of Knowledge Representation
and Reasoning: Proceedings of the Ninth International Conference (KR2004).
AAAI Press, Menlo Park, CA, 2004.

36. A. Farquhar, R. Fikes, and J. Rice. The ontolingua server: a tool for collabo-
rative ontology construction. In Proceedings of the 10th Knowledge Acquisition
for Knowledge-Based Systems Workshop, Banff, Canada, 1996.

37. C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press,
Cambridge, MA, 1998.

38. D. Fensel. Ontologies: Silver Bullet for Knowledge Management and Electronic
Commerce, 2nd edition. Springer, Berlin/Heidelberg, 2003.

39. D. Fensel. Triple-space computing: Semantic Web services based on persistent
publication of information. In Proceedings of the IFIP Int’l Conference on
Intelligence in Communication Systems, Bangkok Thailand, pages 43–53, 2004.

40. D. Fensel, J. Angele, S. Decker, M. Erdmann, H.-P. Schnurr, R. Studer, and
A. Witt. Lessons learned from applying AI to the web. International Journal
of Cooperative Information Systems, 9(4):361–382, 2000.

41. D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF.
Electronic Commerce Research and Applications, 1(2):113–137, 2002.

42. R. T. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, CA, 2000.

43. I. O. for Standardization (ISO). Code for the Representation of Names of
Languages, ISO 639:1988 (E/F). First edition, 1988.

44. I. O. for Standardization (ISO). Representation of Dates and Times, ISO
8601:2000. 2nd edition, 2004.

45. A. V. Gelder, K. Ross, and J. S. Schlipf. The well-founded semantics for general
logic programs. Journal of the ACM, 38(3):620–650, 1991.

46. M. Genesereth. KIF. knowledge interchange format: Draft proposed Ameri-
can national standard (dpANS). Technical Report NCITS.T2/98-004, ANSI
KIF Ad Hoc Group, 1998. Available from http://logic.stanford.edu/kif/

dpans.html.
47. D. Gerlernter. Mirrorworlds. Oxford University Press, New York, 1992.
48. J. González-Castillo, D. Trastour, and C. Bartolini. Description logics for

matchmaking of services. In KI-2001 Workshop on Applications of Description
Logics, September 2001.

49. S. Grimm, B. Motik, and C. Preist. Variance in e-business service discovery. In
Proceedings of the ISWC 2004 Workshop on Semantic Web Services: Preparing
to Meet the World of Business Applications, Hiroshima, Japan, Nov. 2004.

50. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs:
Combining logic programs with description logic. In Proceedings of the 12th

180 References

International Conference on the World Wide Web (WWW2003), Budapest,
Hungary, 2003.

51. B. N. Grosof, Y. Labrou, and H. Y. Chan. A declarative approach to business
rules in contracts: Courteous logic programs in XML. In M. P. Wellman, editor,
1st ACM Conf. on Electronic Commerce (EC-99), pages 68–77, Denver, CO,
1999. ACM Press.

52. O. M. Group. UML 1.4.2 specification. Technical Report ISO/IEC 19501, ISO,
2005.

53. T. R. Gruber. A translation approach to portable ontology specifications.
Knowledge Acquisition, 5:199–220, 1993.

54. M. Grüninger. A guide to the ontology of the process specification language.
In R. Studer and S. Staab, editors, Handbook on Ontologies in Information
Systems. Springer, Berlin/Heidelberg, 2003.

55. M. Grüninger and M. S. Fox. Methodology for the design and evaluation of
ontologies. In Proceedings of IJCAI’95, Workshop on Basic Ontological Issues
in Knowledge Sharing, Montreal, Canada, 1995.

56. N. Guarino. Formal ontology and information systems. In Formal Ontology in
Information Systems, Proceedings of FOIS’98, pages 3–15, Trento, Italy, June
1998. IOS Press.

57. A. Gugliotta, L. Cabral, J. Domingue, V. Roberto, M. Rowlatt, and R. Davies.
A Semantic Web service-based architecture for the interoperability of e-
government services. In Proceedings of the 5th International Conference on
Web Engineering (ICWE 2005), Sydney, Australia, 2005.

58. Y. Gurevich. Evolving Algebras 1993: Lipari Guide, pages 9–36. Oxford Uni-
versity Press, New York, 1995.

59. F. Halsall. Computer Networking and the Internet, 5th edition. Pearson Edu-
cation, Harlow, 2005.

60. P. Hayes. RDF Semantics. W3C Recommendation, 10 February 2004. Avail-
able from http://www.w3.org/TR/rdf-mt/.

61. H. He, H. Haas, and D. Orchard. Web Services Architecture Usage Scenarios.
W3C Working Group Note, 11 February 2004. Available from http://www.w3.

org/TR/ws-arch-scenarios/.
62. J. Heflin and J. Hendler. Dynamic ontology on the web. In Proceedings of

the 17th National Conference on Artificial Intelligence (AAAI-2000), pages
443–449. AAAI Press, Menlo Park, CA, 2000.

63. R. Hodgson and D. Allemang. Semantic Technology for E-Government. In
J. Cardoso and A. Sheth, editors, Semantic Web Services, Processes and Ap-
plications, pages 291–310. Springer, Berlin/Heidelberg, 2005.

64. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.
SWRL: A Semantic Web Rule Language Combining OWL and RuleML.
W3C Member Submission, 21 May 2004. Available from http://www.w3.org/

Submission/SWRL/.
65. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF

to OWL: The making of a web ontology language. Journal of Web Semantics,
1(1):7–26, 2003.

66. U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel. Automatic location
of services. In Proceedings of the 2nd European Semantic Web Conference
(ESWC 2005), Crete, Greece, 2005.

References 181

67. U. Keller, H. Lausen, and M. Stollberg. On the semantics of functional de-
scriptions of Web services. In Proceedings of the 3rd European Semantic Web
Conference (ESWC 2006), Montenegro, 2006.

68. S. N. Khoshafian and G. P. Copeland. Object identity. In Proceedings of the
ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’86), pages 406–416, 1986.

69. M. Kifer. Rules and ontologies in F-Logic. In N. Eisinger and J. Ma�luszyński,
editors, Reasoning Web: First International Summer School 2005, Msida,
Malta, volume 3564 of LNCS, pages 22–34. Springer, Berlin/Heidelberg, 2005.

70. M. Kifer, J. de Bruijn, H. Boley, and D. Fensel. A realistic architecture for
the Semantic Web. In Proceedings of the International Conference on Rules
and Rule Markup Languages for the Semantic Web (RuleML-2005), Ireland,
Galway, November 2005.

71. M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller, H. Lausen, and D. Fensel.
A logical framework for Web service discovery. In ISWC 2004 Workshop on
Semantic Web Services: Preparing to Meet the World of Business Applications,
2004.

72. M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and
frame-based languages. Journal of the ACM, 42(4):741–843, 1995.

73. A. Kiryakov, D. Ognyanov, and V. Kirov. A framework for representing on-
tologies consisting of several thousand concepts definitions. DIP Deliverable
D2.2, Ontotext Lab, 2004.

74. M. C. A. Klein, J. Broekstra, D. Fensel, F. van Harmelen, and I. Horrocks. On-
tologies and schema languages on the web. In D. Fensel, J. Hendler, H. Lieber-
man, and W. Wahlster, editors, Spinning the Semantic Web: Bringing the
World Wide Web to Its Full Potential, pages 95–139. MIT Press, Cambridge,
MA, 2003.

75. G. Klyne and J. J. Carroll, editors. Resource Description Framework (RDF):
Concepts and Abstract Syntax. W3C Recommendation, 10 February 2004.
Available from http://www.w3.org/TR/rdf-concepts/.

76. J. Kopecký, D. Roman, M. Moran, and D. Fensel. Semantic Web Services
Grounding. In International Conference on Internet and Web Applications and
Services (ICIW 2006), page 127, Guadeloupe, French Caribbean, Feb. 2006.

77. J. Kopecky, D. Roman, and J. Scicluna, editors. WSMO Use Case: Amazon
E-commerce Service. WSMO Final Draft, 5 December 2005. Available from
http://www.wsmo.org/TR/d3/d3.4/v0.1/.

78. S. Korper and J. Ellis. The E-Commerce Book: Building the E-Empire, 2nd
edition. Morgan Kaufmann, San Francisco, 2000.

79. R. Krummenacher, M. Hepp, A. Polleres, C. Bussler, and D. Fensel. WWW
or What is Wrong with Web Services. In W. Löwe and J.-P. Martin-Flatin,
editors, Proceedings of the 3rd European Conference on Web Services (ECOWS
2005), pages 235–243, Växjö, Sweden, Nov. 2005. IEEE Computer Society, Los
Alamitos, CA.

80. B. D. Lanvin. E-Government Handbook. Center for Democracy and Technology
and infoDev, 2004. Available from http://www.cdt.org/egov/handbook/.

81. R. Lara, A. Polleres, H. Lausen, D. Roman, J. de Bruijn, and D. Fensel. A
Conceptual Comparison between WSMO and OWL-S. WSMO Final Draft, 12
April 2005. Available from http://www.wsmo.org/TR/d4/d4.1/v0.1/.

82. D. B. Lenat. CYC: A large-scale investment in knowledge infrastructure. Com-
munications of the ACM, 38(11):33–38, 1995.

182 References

83. F. Leymann. Web services flow language (WSFL 1.0). http://www-
3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf, 2001.

84. L. Li and I. Horrocks. A software framework for matchmaking based on se-
mantic web technology. In Proceedings of the 12th International Conference
on the World Wide Web, Budapest, Hungary, May 2003.

85. J. W. Lloyd. Foundations of Logic Programming, 2nd edition. Springer,
Berlin/Heidelberg, 1987.

86. A. Malhotra, J. Melon, and N. Walsh, editors. XQuery 1.0 and XPath 2.0 Func-
tions and Operators. W3C Candidate Recommendation, 8 June 2006 .Available
from http://www.w3.org/TR/xpath-functions/.

87. D. Martin et al. OWL-S: Semantic Markup for Web Services. W3C Mem-
ber Submission, 22 November 2004. Available from http://www.w3.org/

Submission/OWL-S/.
88. D. McDermott. DRS: A set of conventions for representing logical languages

in RDF. January 2004. Available from http://www.daml.org/services/owl-

s/1.1B/DRSguide.pdf.
89. D. L. McGuinness. Ontologies come of age. In D. Fensel, J. Hendler, H. Lieber-

man, and W. Wahlster, editors, Spinning the Semantic Web: Bringing the
World Wide Web to Its Full Potential, chapter 6, pages 171–194. MIT Press,
Cambridge, MA, 2003.

90. S. McIlraith, T. C. Son, and H. Zeng. Semantic web services. IEEE Intelligent
Systems, Special Issue on the Semantic Web, 16(2):46–53, 2001.

91. R. Meersman. Semantic ontology tools in IS design. In Proceedings of the
ISMIS’99 Conference, Warshaw, Poland, June 1999.

92. N. Mitra, editor. SOAP Version 1.2 Part 0: Primer. W3C Recommendation, 24
June 2003. Available from http://www.w3.org/TR/2003/REC-soap12-part0-

20030624/.
93. A. Mocan, editor. WSMX Data Mediation. WSMX Working Draft, 11 October

2005. Available from http://www.wsmo.org/TR/d13/d13.3/v0.2/.
94. A. Mocan, E. Cimpian, M. Stollberg, F. Scharffe, and J. Scicluna, editors.

WSMO Mediators. WSMO Final Draft, 21 December 2005. Available from
http://www.wsmo.org/TR/d29/.

95. M. Moran and A. Mocan. Towards Translating between XML and WSML
based on mappings between XML Schema and an equivalent WSMO Ontol-
ogy. In Proceedings of the 2nd WSMO Implementation Workshop (WIW),
Innsbruck, Austria, 2005.

96. E. Motta. An overview of the OCML modelling language. In 8th Workshop
on Knowledge Engineering: Methods and Languages (KEML 98), Karlsruhe,
Germany, 1998.

97. A. Nadalin, C. Kaler, P. Hallam-Baker, and R. Monzillo, editors. Web Services
Security: SOAP Message Security 1.0 (WS-Security 2004). OASIS, March
2004.

98. S. Narayanan and S. McIlraith. Simulation, verification and automated com-
position of web services. In Proceedings of the 11th International World Wide
Web Conference (WWW2002), Honolulu, Hawaii, May 2002.

99. B. Norton. Dataflow for orchestration in WSMO. WSMO Working Draft
D15.1, 2006.

100. B. Norton, S. Foster, and A. Hughes. A compositional semantics for OWL-S. In
Proceedings of the 2nd International Workshop on Web Services and Formal

References 183

Methods (WS-FM 05), number 3670 in LNCS. Springer, Berlin/Heidelberg,
Sept 2005.

101. B. Norton and C. Pedrinaci. 3-Level Service Composition and Cashew: A Model
for Orchestration and Choreography in Semantic Web Services. In Proceedings
of 2nd International Workshop on Agents, Web Services and Ontologies Merg-
ing (AWeSOMe’06), Oct 2006.

102. N. Noy. Semantic integration: a survey of ontology-based approaches. ACM
SIGMOD Record, 33(4):65–70, 2004.

103. Object Management Group Inc. (OMG). Meta Object Facility (MOF) Speci-
fication v1.4, 2002.

104. B. Omelayenko and D. Fensel. An Analysis of Integration Problems of XML-
Based Catalogs for B2B Electronic Commerce. In Proceedings of the 9th IFIP
2.6 Working Conference on Database Semantics (DS-9), pages 232–246, April
2001.

105. J. O’Sullivan, D. Edmond, and A. T. Hofstede. What is a service? towards
accurate description of non-functional properties. Distributed and Parallel-
Databases, 12(2–3):117–133, 2002.

106. M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Semantic matching of
web services capabilities. In I. Horrocks and J. Hendler, editors, The Semantic
Web - ISWC 2002: First International Semantic Web Conference, Sardinia,
Italy, June 9-12, 2002. Proceedings, volume 2342 of LNCS, pages 333–347.
Springer, Berlin/Heidelberg, 2002.

107. M. Paolucci, N. Srinivasan, and K. Sycara. Expressing WSMO Mediators
in OWL-S. In Proceedings of the ISWC 2004 Workshop on Semantic Web
Services: Preparing to Meet the World of Business Applications, Hiroshima,
Japan, Nov. 2004.

108. P. F. Patel-Schneider and D. Fensel. Layering the semantic web: Problems
and directions. In I. Horrocks and J. Hendler, editors, The Semantic Web
- ISWC 2002: First International Semantic Web Conference, Sardinia, Italy,
June 9-12, 2002. Proceedings, volume 2342 of LNCS, pages 16–29. Springer,
Berlin/Heidelberg, 2002.

109. P. F. Patel-Schneider, P. Hayes, and I. Horrocks, editors. OWL Web Ontology
Language Semantics and Abstract Syntax. W3C Recommendation, 10 February
2004. Available from http://www.w3.org/TR/owl-semantics/.

110. A. Patil, S. Oundhakar, A. Sheth, and K. Verma. METEOR-S Web service
Annotation Framework. In Proceedings of the 13th International World Wide
Web Conference (WWW2004), 2004.

111. C. Preist. A conceptual architecture for semantic web services. In S. A. McIl-
raith, D. Plexousakis, and F. van Harmelen, editors, The Semantic Web –
ISWC 2004: Third International Semantic Web Conference, Hiroshima, Japan,
volume 3298 of LNCS, pages 395–409. Springer, Berlin/Heidelberg, Nov. 2004.

112. S. Rajesh and D. Arulazi. Quality of service for Web services – demystification,
limitations, and best practices.

113. R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Im-
plementing Dynamical Systems. MIT Press, Cambridge, MA, 2001.

114. J. Reynolds. The Complete E-Commerce Book: Design, Build, and Maintain
a Successful Web-Based Business. CMP Books, Gilroy, CA, 2004.

115. R. Richardson and A. F. Smeaton. Using WordNet in a knowledge-based
approach to information retrieval. Technical Report CA-0395, School of Com-
puter Applications, Dublin City University, Dublin, Ireland, 1995.

184 References

116. D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg,
A. Polleres, C. Feier, C. Bussler, and D. Fensel. Web Service Modeling Ontol-
ogy. Applied Ontology, 1(1):77–106, 2005.

117. D. Roman, H. Lausen, and U. Keller, editors. Web Service Modeling Ontology
(WSMO). WSMO Final Draft, 13 April 2005. Available from http://www.

wsmo.org/TR/d2/v1.2/.
118. R. Rosati. DL + log: Tight integration of description logics and disjunctive

datalog. In P. Doherty, J. Mylopoulos, and C. Welty, editors, Principles of
Knowledge Representation and Reasoning: Proceedings of the 10th Interna-
tional Conference (KR-06). AAAI Press, Menlo Park, CA, 2006.

119. F. Scharffe and J. de Bruijn. A language to specify mappings between on-
tologies. In Proc. of the Internet Based Systems IEEE Conference (SITIS05),
2005.

120. S. K. Sharma and J. N. D. Gupta. Web Services Architecture for M-
Government: Issues and Challenges. International Journal of Electronic Gov-
ernment, 1(4):462–474, 2004.

121. M. Stollberg, E. Cimpian, and D. Fensel. Mediating capabilities with delta-
relations. In Proceedings of the First International Workshop on Mediation in
Semantic Web Services, Amsterdam, the Netherlands, 2005.

122. M. Stollberg, E. Cimpian, A. Mocan, and D. Fensel. A Semantic Web Media-
tion Architecture. In Proceedings of the 1st Canadian Semantic Web Working
Symposium (CSWWS 2006), Quebec, 2006.

123. M. Stollberg, U. Keller, and D. Fensel. Partner and service discovery for col-
laboration establishment with Semantic Web services. In Proceedings of the
3rd International Conference on Web Services, Orlando, Florida, July 2005.

124. M. Stollberg, H. Lausen, R. Lara, U. Keller, M. Zaremba, A. Haller, D. Fensel,
and M. Kifer. WSMO Use Case “Virtual Travel Agency”. WSMO Working
Draft, 19 November 2004. Available from http://www.wsmo.org/TR/d3/d3.3/

v0.1/.
125. R. Studer, V. R. Benjamins, and D. Fensel. Knowledge engineering: Principles

and methods. Data and Knowledge Engineering, 25(1–2):161–197, 1998.
126. K. Sycara, S. Widoff, M. Klusch, and J. Lu. LARKS: Dynamic matchmaking

among heterogeneous software agents in cyberspace. Autonomous Agents and
Multi-Agent Systems, 5:173–203, 2002.

127. A. Tanenbaum. Computer Networks, 4th edition. Prentice Hall, Upper Saddle
River, NJ, 2004.

128. H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn, editors. XML
Schema Part 1: Structures, 2nd Edition. W3C Recommendation, 28 October
2004. Available from http://www.w3.org/TR/xmlschema-1/.

129. M. Uschold, M. King, S. Morale, and Y. Zorgios. The enterprise ontology. The
Knowledge Engineering Review, 13(1):31–89, 1998.

130. W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P.
Barros. Workflow patterns. Distributed and Parallel Databases, 14(3):5–51,
June 2003.

131. K. Verma, A. Mocan, M. Zaremba, A. Sheth, J. Miller, and C. Bussler. Linking
semantics web service efforts - integrating WSMX and METEOR-S. In 2nd
International Workshop on Semantic and Dynamic Web Processes (SDWP
2005), July 2005.

References 185

132. K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, and J. Miller.
METEOR-S WSDI: A Scalable Infrastructure of Registries for Semantic Publi-
cation and Discovery of Web Services. Journal of Information Technology and
Management, Special Issue on Universal Global Integration, 6(1):17–39, 2005.

133. S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Furgeson. Web
Services Platform Architecture. Prentice Hall, Upper Saddle River, NJ, 2005.

134. S. Weibel, J. Kunze, C. Lagoze, and M. Wolf. Dublin Core metadata for
resource discovery. RFC 2413, IETF, September 1998.

135. G. Wiederhold. Mediators in the architecture of the future information systems.
Computer, 25(3):38–49, 1994.

136. M. zur Muehlen, J. V. Nickerson, and K. D. Swenson. Developing Web ser-
vices choreography standards - the case of REST vs. SOAP. Decision Support
Systems, 40(1):9–29, 2004.

Index

abstract state machines (ASMs), 71

BPEL4WS, 48
business-to-business (B2B), 161
business-to-customer (B2C), 158

capability, 69
choreography, 70
composition, 132
control flow, 133

data flow, 134
data mediation, 126
discovery, 115
document type definition, 17
DOME, 150
DRS, 102

e-banking, 166
e-commerce, 157
e-goverment, 165
eclipse platform, 145
eXtensible Markup Language (XML),

14

F-Logic, 35

goal, 74
grounding

behavaioral, 139
conceptual, 135
data, 136

heuristic classification, 118

HyperText Markup Language (HTML),
12

HyperText Transfer Protocol (HTTP),
11

interface, 69
Internet Reasoning Service (IRS), 154

Knowledge Interchange Format (KIF),
30, 102

matchmaking, 123
mediation, 124
Meta-Object Facility MOF, 60
middleware, 40

nonfunctional properties, 64

OASIS, 171
ontology, 25, 63
ontology alignment, 126
ontology mapping, 126
ontology merging, 126
orchestration, 133
OWL, 26, 33
OWL-S, 101

process mediation, 127

reasoner, 142
Remote Procedure Call (RPC), 40
Resource Description Framework

(RDF), 31
REST, 174

188 Index

Semantic Web, 25
Semantic Web language layer cake, 26
Semantic Web Rule Language (SWRL),

34
Semantic Web Services Framework

(SWSF), 104
Semantic Web Services Language

(SWSL), 105
service-oriented architecture (SOA), 39
SOAP, 42
state signature, 72

transition rule, 73
triple spaces, 175

UDDI, 46
Unique Resource Identifiers (URI), 10

Virtual Travel Agency, 113

W3C, 9
Web Ontology Language (OWL), 26, 33

Web Service, 37, 67
Web Service Definition Language

(WSDL), 44
World Wide Web, 7
WSDL-S, 107
WSML, 83

API, 142
atom, 91
logical expression, 90
molecule, 91
reasoner, 142
syntax, 86

WSMO Studio, 149
WSMO4J, 142
WSMT, 146
WSMX, 151

XML, 17
XML namespaces, 18
XML Schema, 20
XPath, 21
XSLT, 21

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

